Patni Computer Systems Ltd.

b [Pl

Version 4.1

19" M ay 2005

SEI-CMM .

L.EVEL p A (]

o 1.
Pt By I G iy Enth 0

Copyright © 2005 Patni Computer Systems Ltd., Akruti, MIDC Cross Road No. 21, Andheri (E),
Mumbai 400 093. All rights reserved. No part of this publication canbe reproduced in any way,
including but not limited to photocopy, photographic, magnetic, or other record, without the prior
agreement and written permission of Patni Computer Systems.

Patni Computer Systems considers information included in this documert to be Confidential and

Proprietary.

Patni Internal

C Programming

Table of Contents

N o 1 11 g [T o i I o R G5 1
11 EVOIULION OF “C7 .t e et e e e e e e e e nnnneeas 1
1.1.1 Compilation @nd EXECULIONcooiueeeiiieeiiieeiiieesiiee et 1
1.2 FEAIUIES OF €.ttt e e e e as 2
13 CONSEANES. ...t e e et e e e e e e e s bbb e e e e e e e e e a bbb e neeeaaeeeaa 2
1.3.1 SymDBOIIC CONSIANLS.cceiiuiiiieeiiiiiee ettt et e e s e e s e e e e nnes 3
1.4 Variables and Data TYPES ...cceiieieieeiiiiiie ettt e e s e e e s naee e e s snnneeeeans 3
O Y o -SSP 3
142 Dalatypes and SIZES.......ccoiueieiieieiiieeeiie ettt 3
15 ESCANE CalaTIErS ...ttt 6
1.6 FOrmat CONLIOl SHTNGS.veieiieie it 6
1.7 The Structure 0f & C PrograMcoiiiie it 6
1.7.1 The preproceSSor QIFECHIVE........cuuiie i ittt e e e e e e 7
18 6 O 0 00 =0 4 USSR 7
2 Operatorsand TYPE CONVEN SIONcceeiiiiirrieerieeiesieesie e sreessesee e seesaessseseesseessens 8
21 (@07 2 (o PP UP PP PPPRPTRPPPRIIN 8
211 ArithmMELiC OPEIEIOIS. ...c.ueeeeiiie ettt ettt ettt ettt be e e e e enne e e 8
212 RE@ONal OPEIEIONS. .. .cueiiiieie ittt ettt 8
P22 RS T o o o 0 0 < 1= 0] £ 0PTSRS 9
2.1.4 Unary Increment and Decrement OPEratorsS.........ceeeecuveeeeeiiiieeeeiiieeeeesiieeeessineee e 9
215 BilWiSE OPEIEIOIS.....ccitiiee ettt ettt e e e e e e e e e e e e e e s e e e e e naeeas 10
2.1.6 Ternary/Conditional OPEraor........cccceeeiiiciiiieiieee e e eccirere e e e e e s ee s e e e e e e e e nnnees 10
2.1.7 Compound ASSIgNMENE OPEIEIOISceeeivrreeeeiiiieeeesieeeeessnreeeessreeeessreeeeesnnseeeas 11
2.1.8 The SIZEOF OPEIAION ... eveeeeeeieiee ettt e et e et e e e e e e e e e e e s snnreeeeannneeeas 11
22 Precedence and order of evalualion.............coocuueeeeiiiieee s 12
23 TYPPE CONVEISION ...ttt ettt ettt ettt ettt ettt et e e ssb e e e se e e e bb e e ebe e e enbe e e enbeeesnneeeanes 12
231 Implicit arithmetiC CONVErSIONS.ccuviiiiiiiiiiieriie e 13
2.3.2 Type conversion iN ASSIONMENESeeeiirieiiieerieeenieeesireeeseeesssreesseeesseeesseeeas 13
P2 R T Y/ o X o= S 1 o PR STPRTRRURRI 13
I I o a1 4 o I o 1SS 15
31 Statements and DIOCKS.ooiiiiii e 15
3.2 Selection or Decision Control SEALEMENTS.cvveireiiiiiee e erieee e eeeeee e 15
3.3 THhe If SEALEMENT....... e e e e e e e nnnnee s 15
34 Theif ..elSe STAEMENT.........eii i e e s 16
35 Nested conditional CONSITUCESueveeiiiiie et cre e e e 17
3.6 Theelseif .. STAEMENLooieiiee e 17
3.7 The SWItCH SEAEEMENTeeeeiiiie e 18
3.8 Repetition or Loop CoNtrol Statements..........c.vvveeeeeeeeicciiiieeee e e e e e e e 19
3.8 1L TheWhIlELOOP ...t e e e e e e e e nenees 19
3.8.2 Thedo..Whil€ [00P........uiii e 20
ICTRS ¢ T I 0 1= (o gl o o o SO 21
3.9 LOOP INEEMTUDLION ...ttt et e e e esnne e 23
3.9.1 Thebreak SatEmMENt........ccccciiiiee e e e e e nnnaeeas 23
3.9.2 The CoNtiNUE SLEEEMENTcuviiee e e e e e e e e e snnaeeas 23
3.9.3 The Xt fUNCHION ...ccoiiiiiee e e s e e 24
O [T Ao R 25
4.1 Fundamentals Of FUNCLIONS..........ccuuiiiiiiiiiie e 25
— ~ Patni Internal i
| D I\ (B

C Programming

4.2 Function declaration and PrototyPeveveeiiiiiee i 25
4.3 FUNCEION dEfINITION ... 26
4.4 FUNCHION Call ... 27
4.5 THe FEtUNN SEAEEMENE ...t e e e e e e e e e e nnneeeas 28
4.6 FUNCEION @QUIMENESeeiie ettt e e et e e s e e e e e nnnneeeeennes 29
4.6.1 Passing Argumentsto @ FUNCHON.oooiuiiiiiiiiiiie e 30
4.7 SCOPE Of Vi@l ES. ... e 31
4.8 SLOTAOE ClASSES ...ttt sttt ettt ne e naneas 32
4.8.1 AUOMELIC VaTaDIES. . ..o s 3
482 SACVaTabIES.....ccueiieiee s A
483 RegiSter VariableS.......uuviiiiiie i 35
484 Externa Variables........cocooooiiiiiii 36
4.9 Variable iNItaliZatON.cooeiiiii e 38
e I RS w0 o= (U] = PR 338
(O 5 L= o b £ To o O TP OP PP 38
ST L Y PSSP 40
51 DEFINITION. ...ttt e et b e s be e e snbe e e annee e 40
5.2 Declaration of Single Dimensional Array (VECLOrS)cccveveeeiieeeeeiiiieeeceieee e 41
5.3 Initialization of Single DIMeNSIoNal AITaYeeeeeeeiiiciiiieeee e e e 11
54 Array elementSiN MEMOIYocoiiiiiie et s e e e nees 43
55 F N = Y (070 =-= | o PSR 44
5.6 MUItIIMENSIONEl ATTAYS.....eeeiieeeiiee ettt e e ne e 45
5.6.1 Declaration of multi-dimensional arrays...........coceeerueeiiiieiniee e 45
5.6.2 Initialization of two-dimensional arTaysScoocueeeiieriiiieeiee e 46
5.6.3 Memory Representation of Two-dimensional ArfaysSccooveeeiveeiiieeiiieeesieens a7
5.6.4 Two-Dimensional Array PrOCESSING.......c.ueeuueeeiuereiieeeiiieasieessiiesssieeesseeesseeens 48
5.7 WL @€ SIIINGS?. ...t e e s e e et e e e e s e e e e anareeaeennes 48
5.7.1 Initidlizing CharaCler ATTAYSuveeeiie e cciiieeee e e e e e e e e e e e s r e e e e e e nannees 48
5.8 BUIlt-1N SIHNG FUNCLIONScviiiiiiiiiie e 50
5.8.1 SIrCal (target, SOUICE).......eeeiieeeeeeeiiiieeeeiieeeeestieee e e snteeeeessnnneeeessneeeessnsneeeeannnneeas 50
5.8.2 Stremp (SNGL, SING2) weeeeiieiiieeeiiiiee et e e e s snneee e e s nnneeeas 51
5.8.3 SrCPY(Larget, SOUICE)eeeeueieiieieiieie et e et e st e ettt e b e e s e e sne e e snnee e 52
RS S ([1 (] 0o) TP UPROTRROURRRPI 52
5.9 Two Dimensiona Arrays Of CharaCters..........cccovuiiiiiei e 53
510 Standard Library String FUNCHIONScocueiiiiiiiiiiee e 53
I =01 01 TSP 54
6.1 What iSapointer VariablE?..........cuueiiiiiiie e 4
6.2 Address and Dereferencing (& and *) OpEratorsS.........coevvueeeeeiniieeeeiiieeeessiieee e 54
6.3 Pointer type DECIAIaiON...........ueiiiiie ittt 55
6.4 POINEEN ASSIONIMENE. ...ttt e e e e s b e e sne e e snnee e 56
6.5 POINtEr TNITTAITZAITIONeeeieiie e 58
6.6 POINEEr AFTTNMELIC ... e 59
6.7 POINEEr COMPANTSONteieiteie ittt ettt e s be e e st e e sbe e e snbeeesnneeens 61
6.8 POINLErS 8N FUNCLIONS ..ot 61
6.8.1 Call DY VEIUE ... e 62
6.8.2 Call DY REFEIENCE. ... e 63
6.9 POINTEIS TO FUNCLIONSoeiiiiiiee ettt e e s e e e e e e e e e nnees 64
6.9.1 FuNCtions refurning POIMEEYS..........coouuiiiiiieiiie et 67
6.10 POINLEIS N ATTAYS ...eiiuiieieieieetiee ettt ettt ettt et e e e e e s e e aae e e ebe e e ebe e e snneeeenneas 67
B.10.1 POINES TO ATTAY. .. eeeiieieeieeeeieee et et e sttt et e et e e s sae e bneesneeesseeesnnneeas 68
6.10.2 Arraysas FUNCLON ATQUMENTScoiuiieiiieeiiieesieeesiteessieee s e e 70
— Patni Internal i
| D I\ (B

C Programming

6.10.3 Pointers and CharaCter arrayS..........ceccueeeeiiiieieeeciiee e e eeiiee e e e e e e e e 71
6.10.4 Pointers and multidimensional arrayS...........ccccuvvieeieeee e 72
6.10.5 AITAYS Of POINIEIS.....ceiiiiiiiiiee ittt e e s sne e e s nnneeeas 76
6.11 POINEISTO POINMEIS.......eiieiiiiiiee ettt eee et e et e e e e e e et e e e e nneee e e e nnnaeeeeennnes 78
6.12 DynamiC Memory AIOCEIION..........uueiiiiiieeeeiiiee e snaee e e e nnees 83
6.12.1 VOIO* MEIIOC(SIZE)eveeeieeeeieie ettt e 83
6.12.2 vOId* CAllOC(NITEMS, SIZE).....cueiiiieieiiie et &
6.12.3 void* realoc(void *DlOCK, SIZE)cccuiiiiieiiiiieiiee e 85
(3 S 1 (= = {11) ISP URRRTI 85
6.13 POINLEr DECIAIBIONS.cccueiiiieiiiieiee sttt nne e 83
6.14 Command Line ATQUMENTSuuiiiieieiiiie it 88
T SETUCKUT B ..ttt ettt a e st e et e e e ae e e b e e sae e saeeesaeeemseeaneesareenneeannan 90
7.1 BaSICS Of SITUCIUIESeeee et e e e e e e e e e e e e nnees 0
7.1.1 Declaration of Individual Members of a Structure.............ccocceeeiiieiiiiiiieenieens 92
7.1.2 SUUCIUrE VariablES......cveeee ettt e e e 92
7.1.3 Structure INItialiZation..........c.veeeeiiiiee e 93
7.1.4 ACCESSING SITUCTUIE MEMDENS.....ciiiiiieiiiee e 93
7.2 NESIEA SITUCTUIES ...t 9%
7.3 SHUCIUIES @NA ATTAYS.......ccceiieeee e e e e et e e e e e s st e e e e e e e e st r e e e e e e e e e s s nnraneeeeeas 98
7.3 1 AITayS OF SIUCIUIES......eeiieiiiiiie ettt e e e s sane e e s nnnneeas 98
7.3.2 ArraySWIthin SITUCIUIES.........eeveeiiiiiee et e e e 9
7.4 SIrUCTUrES @NA POINLENS......ceee e e e e e e e e e s e e e e nnneeeas 100
741 POINErSTO SIUCIUIES. .. .ceeiieieeeeisiiieeeeiteee e s sieee e e ssseeeeeesnaeeeeesnsaeeeesneeeeeannnneeas 100
7.4.2 Structures ContaiNing POINENS.........c.uiiiiiieiiieeniee et 103
7.5 Fictorial Representation of AbOvE COUE..........cccueiiiieiiiiieiiee e 105
7.6 SIrUCLUreS and FUNCLIONS ...t e e e e 107
7.6.1 Structures as FUNCLION ATQUMENLS.ccuueieeiiiiieeeeiieeeeeeiree e e eerre e e e esineeeeennaeeas 107
7.6.2 Structures as FUNCHION VAUBS..........cceoiiiiiiiiieii s 111
8 DALA SITUCLUI S ...ttt ettt e e s e ae e e neesneesareesneesnneenneeas 112
8.1 LINKEO LISES ..o iieiieeeeiiiee e e etieee ettt e e et e e et e e e et e e e ennae e e e snnneeeennsneneeans 112
811 Creating alinKed lISh........eoiieiiiiiie e 112
8.1.2 Toaddtothebeginning Of the list..........cceoeiiiiiie e 114
8.1.3 Toaddtothemiddie of thelist.........cccccuvveeiiiiiie e 115
814 Toaddtotheend of thelist.........ccoiiiiiiiiii e 115
8.1.5 Insertion of New NOde iNthe lISt.......ceiiiiiiiiie e 116
8.1.6 Searchinganodeinthelist.......ccocceiiiii i 116
8.1.7 Digplaying the liNKed liSh.........ccouiiiiiiiiiiie e 117
8.1.8 Ddetion of existing node from the linked liSt..........ccceveeiiiieiniiiee e, 118
8.2 Complete Program for the operations of Linked listccooceeiiiiiiiiiiiiiieneeee 119
8.3 DOUDIY LINKEO LISt......eeieiieieiiiie sttt 122
8.4 S 0 RSO P 123
85 QUEBUIES ... 124
LS T 1= o = To | 1 o S 125
9.1 INEFOTUCTION ...t 125
9.2 Unformatted hightlevel disk 1/O fUNCLIONS..........cooviiiiiieiiiiee e 125
9.21 Opening afile with fopen() fUNCLIONcocveiiiiiii e 125
9.2.2 Closing afilewith fclose() fUNCHIONcoeiiiiiiiie e 126
9.3 Character Input/OULPUL IN FITEScoeeiiiieie e 126
9.3 1 ThefunCtion QEIC() .. .eeoiueeeiieie ettt 127
9.3.2 ThefunCtioN PUEC() .. .eeeiveeeeiiee ettt 127
— ~ Patni Internal iii
| D I\ (B

C Programming

94 Command Line Arguments (Using argc and argv parameters)..........eeeeveveeeeennnnen.. 128
9.5 String (ling) INPU/OULPUL IN FIES.........eviiieeiee e 129
951 Library Call fOES() ... coveereeeieeiieeriee ettt 129
9.5.2 Library Call fPULS()vvveeeeiiiieeeiiiiieeeeiiiee e sttt e et e e e s e e e e nnnaeeas 130
9.6 Formatted high-level disk 1/0O fUNCLIONSccvvereiiiiiie e 131
9.6.1 TheLibrary FUnction fPrintf()coveiiiieiiieie e 131
9.6.2 Thefunction FSCANT()veeeeeie i 132
9.7 DiIreCt INPUL/OULPUL.ceiuveieiieieiiie ettt ettt e e 132
9.7.1 Library Call fread()......cccoverimiieeiieiie et 133
9.7.2 Library Call fWILE()....ueeeeeiiiiee et 133
9.8 Error Handling FUNCLIONSc.cuviiiiieec et 136
9.8.1 ThefunCtion FEOF().......uueeeiiiriie e 136
9.8.2 ThefunCON FEITON()vveee et nneeeas 136
9.8.3 ThefunClioN PEITON() ..veeeeeiiieeee e e et e e e e e e e s snne e e e e nnnneeas 136
9.9 FIIE POSTIONING ...ttt 137
9.9.1 Thefunction FSEEK()... .. veeiieee e 138
9.9.2 The FUNCHON FLEII() .. vvieieeeieee e e 138
9.9.3 ThefunCtion rEeWINA()cooiiieiiiie i 138
10 MISCEIBNEOUS.coueeiieiieiesie sttt sttt b et sae b nre s neeneas 139
O R I 0T O = o (00 o) PSPPSR 139
10.2 INtrodUCLiON tO PrefarOCESSONvvieeiiiiieeeeiieeeeesieeeeeesnseeeeeesneeeeessnneeeeasnnneeeeennnes 139
ORI |V F="os (o =W 0 1] (1 (o [T RR 139
10.3.1 MaCrOSWIth @ QUMENES......c.viieiiiieiiee ettt 140
10.3.2 NESNG Of MACIOS.....ccuueieiuiiieiiieeeiee e etee et ettt sttt be e b e e snee e 141
10.4 UNAEfINING MBCIO.......ciiiiieiiie ettt 141
105 FlEINCIUSION ..oviiiceie ettt e e e e e e e e e s s e e e e ennes 141
10.6 Conditional CoOMPIBLIONccccuiieeiiiiieee e e 142
10.7 EITON GENEIBLION.cciiiieiiiieiiee ettt 143
10.8 User DefiNed Dala TYPES.ccoiiuriieeiiiiiieeesiieie e e siteee et e e s entee e e siae e e s nnnsee e e ennes 143
10.8.1 typedef SEaEMENT.......cuveeeeeiiiieeeeiiie e eeteee e s e e e e s e e e e nnreeeean 144
10.8.2 ENUMEGIONSceeieecieiee ettt e e e enreee e e 146
0 RS U o ' SRS PR 149
10.9.1 OperationS 0N @UNIONcc.ueiiiiiieiiee ettt 150
10.9.2 Differences between Structures and UNIONS...........cooveeeiieeeiiieenieee s 150
Appendix A: Table Of FIQUIES.........ooi ettt s 152
Appendix B: List Of tabIES.......cceiiieiiece e 154
— ~ Patni Internal v
| D I\ (B

C Programming

1 AnIntroductionto“C”

C is a programming language developed at AT & T's Bell Laboratories of USA in 1972. It was
designed and written by Dennis M. Ritchie. In the late seventies, C began to replace the more
familiar languages of that time like PL/1, ALGOL etc. Possibly, C seems so popular because it is
reliable, smple and easy to use.

1.1 Evolution of “C”

An international committee developed ALGOL 60 language, which is used to program al
type of applications such as commercia applications, scientific gpplications, system applications
and so on. However, ALGOL 60 never became popular because it was too abstract and too
generd. To reduce this abstractness and generdity, a new language called Combined
Programming Language (CPL) was developed at Cambridge University. However, CPL turned
out to be so big, having so many features, that it was hard to learn and difficult to implement.

Basic Combined programming Language (BCPL), developed by Martin Richards at Cambridge
University to solve the problems of CPL. But unfortunately it turned out to be too less powerful
and too specific. Around same time a language called “B” was written by Ken Thompson at AT
& T'sBdl labs, as a further smplification of CPL. But like BCPL, B is aso too specific. Finally
Ritchie inherited the features of B and BCPL, added some of his own stuff and developed “C”.

1.1.1 Compilation and Execution

As like most high-level languages, C aso uses compiler to convert its source code (files with the
extension .c) to object code (files with the extension .obj) and the object code will be link edited
by the linker to form the machine language also known as executable code (files with the
extension .exe). The following figure (Fig. 1.1) explains the various stages of compilation.

— Patni Internal Page 1 of 154

C Programming

C Program

4

Preprocessor

1

Compiler
Assembly Code 1

Assembler

Object |
Code l

Link Editor

Executable Code

Fig 1.1: Various Stages of Compilation

1.2 Featuresof C

Robust language, which can be used to write any complex program.
Has rich set of built-in functions and operators.

Well-suited for writing both system software and business applications.
Efficient and faster in execution.

Highly portable.

Well-suited for structured programming.

Dynamic Memory Allocation

VVVVYVYY

1.3 Constants

A congtant is an entity (memory location) whose value does not change during the program
execution. Constants are either created literaly or via the #define statement.
E.g.
58, 344 (I'nteger literal constants)
‘P, 'C, T (Character literal constants)
“Patni Conputer Systenms Ltd.” (String constant)

A dtring congtant is always stored in an array with multiple bytes and ends with a specia
character \O' (Backdash Zero). This character, also called as null character, acts as a string
terminator.

Patni Internal Page 2 of 154

C Programming

1.3.1 Symbolic constants

Symbolic constants are usually written in uppercase to differentiate them from variables.
E.g.

#define TRUE 1

#def i ne MAX_LI NE 1000

#define NULL ‘\ O’

Expressions consisting entirely of constant values are called constant expressions.
Eg:

128 + 7 — 17

1.4 Variablesand Data Types
1.4.1 Variables

A variable is an entity used by the program to store values used in the computation. Variable
names are the names (labels) given to the memory location where different constants are stored.
The type of variable depends on the type of constant that it stores.

Rulesfor forming variable names:

» It should begin with aletter or underscore (_).
» Followed by any combination of letters, underscores or the digits 0-9.

E.g.
sum, piece flag, sys flag. Valid names
8name, price$, tel# Invalid names

» The uppercase and lowercase letters are distinct in C; the variable names “ Sum”
and “SUM” refer to different variables.

» The length of avariable name depends on the compiler.

» No commas or blanks are alowed within a variable name.

1.4.2 Datatypes and sizes

| CbDaaTypes |

v

Primary Data Types | | Secondary Data Types
N N
Character Array
I nteger Pointer
Float Structure
Double Union
Enumeration

Fig 1.2: Data Typesin C

Patni Internal Page 3 of 154

C Programming

1421 Integers

The alowable range for integer (int) in a 16-bit (2 bytes) computer is -32768 to +32767. For a 32-
bit (4 bytes) computer, of course, the range would be much larger. In Integer (2 bytes), the 16th
bit is used to store the sign of the integer (1 - if the number is negative, O - if it is positive).
E.g.

int i ;

int p =320, r = -100;

There are afew qualifiers that can be applied to these basic types. short and long, which will vary
the size of the variable, signed and unsigned, which varies the range.

A long integer (long int) would occupy 4 bytes of memory, which is double the size of int on a
16-bit environment. The value of long integer can vary from -2147483648 to +2147483647. short
int will be same asint.

E.g.

short int i;
| ong i nt abc;
| ong xyz; /* same as long int xyz */

An unsigned integer is one, which cannot store negative values. The most significant bit will be
utilized for storing the value and not used for storing the sign. The vaue will range from 0O to
65535 on a 16-bit environment. A signed int issame asint.

A long unsgned int, which has range of 0 to 4294967295, occupies 4 bytes of memory. By
default, along int isasigned long int.
E.g.

unsi gned int ui;
unsi gned | ong ul MemAdd;

1422 Floating Point or Real Numbers

Hoating point numbers or Real numbers could be written in two forms, fractiona form and
exponential form. The value can be positive or negative. Default sign is positive. No commas or
blanks are allowed. In the exponential form representation, the real constant is represented in two
parts. The part appearing before ‘€ is called mantissa, whereas the part following ‘€ is caled
exponent.

The first type of floating point number is float, which is a single precison real number, occupies
4 bytes.
E.g:

float p
float |j

3. 2e-5;
4.1e98, k = 34.65F;

A double precision real number, double occupies 8 bytes. If Stuation demands usage of real
numbers that lie even beyond the range offered by double data type, then there exists a long
double that occupies 10 bytes.

E.g.
double d = 5. 6e+34;
| ong doubl e dH gh = 3. 4E- 65;
. B Patni Internal Page 4 of 154

C Programming

1423 Character

A character (char) data type stores a single aphabet, a single digit or a single special symbol

enclosed within single inverted commeas.

E.g:

char chQd = ‘A,
char flag = “\n’,

chNew = “a’;
spec = ‘*’;

Character can be ether sgned or unsigned both occupying 1 byte each, but having different
ranges. A signed char is same as ordinary char and has a range from -128 to +127, where as

unsigned char has arange from 0 to 255.

1424 String

String in “C” is a group or aray of characters enclosed in double quotes. C compiler
automatically puts a NULL character, \O' character, at the end of every string constant. The ‘\O’

isastring terminator. String containing no charactersisa NULL string.

E.g:
° char coName[] = “PCS’ | P[C| S|\0)
Rangein environment
Datatype Usage
16 bit 32 bit
char 19810 127 19810 127 A single byte capable of holding
one character.
short int -2°t027-1 27 t027-1 An integer, short range.
int -2°t02°-1 27 t0 271 Aninteger.
long int -2t t0 271 27 t0 271 An integer, long range.
float -3.4e38 to +3.4e38 (4 bytes) Sngle-precision floating point.
double -1.7e308 to +1.7e308 (8 bytes) | Double-precison floating point.
unsigned int Oto2°-1 Oto2*-1 Only postive integers.
unsigned char 0to 255 Oto 255 Only positive byte vaues.

Fig 1.3: Data types and their range.
Note: Thesizeof an integer isconsidered as4 bytes, in thefurther discussionstill the scope
of thisbook, assuming that you will beworking on a 32-bit environment. If you areworking
on a 16-bit environment consider the size of an integer as 2 bytes.
1425 Declarations

All the variables/constants must be declared before use. A declaration specifies a type, and
contains alist of one or more variables of that type.

E.g.
i nt nCount, nLow, nHigh;
char c;
~w A 7 1 Patni Internal Page 5 of 154

C Programming

1.5 EscapeCharacters

These are non-graphic characters including white spaces. These are non-printing characters and
are represented by escape sequences consisting of a backdash (\) followed by a letter.

Character Description
\b Backspace
\n New line
\a Beep
\ Tab
\H ”
\\ \
\1 ’
\r Carriage return

Table 1.1: Escape Characters.

1.6 Format Control Strings

Data Type Conversion Specifier
signed char %cC
unsigned char %c
short signed int %d
short unsigned int %u
long signed int %ld
long unsigned int %lu
float %f
double %olf
long double %L f

Table 1.2: Format Control Strings.

1.7 TheStructureof a C program

Preprocessor Directives

Function declarations and definitions

A function is a block of statement that breaks the entire program into smaller
units.

A C program must have a main function, which is the entry point to al the
programs.

This function can call other library functions or user-defined functions.

YV VYV VYVV

Patni Internal Page 6 of 154

C Programming

1.7.1 The preprocessor directive

Preprocessor is a part of the compiler. A C program may have the following preprocessor

directive sections.

| # include <fil e-name>

The #include directive tells the preprocessor to treat the contents of afile, specified by file-name,
as if those contents had appeared in the source program at the point where the directive appears.
You can organize constant and macro definitions into include files and then use #include

directives to add these definitions to any source file.

| # define identifier t oken-string

The #define directive gives a meaningful name to a constant (Symbolic constant) in your
program. This directive substitutes token-string for all subsequent occurrences of an identifier in

the sourcefile.

1.8 First C program

void main(void)

char c;

unsigned char d;

inti;

unsigned int j;
longint k;

unsigned long int m;
float x;

doubley;

long double z;
scanf(“*%c %c”, &c, &d);
printf(*%c %c”’, c, d);

scanf(“%d %u”, &i, &j);
printf(“%d %u”, i, j);

scanf(“%Ild %lu”, &k, & m);
printf(“%]Id %Ilu”, k, m);

scanf(“ %f %If %lf”, &X, &y, &2);
printf(“ %f %lIf %If", X, y, 2);

Fig 1.4: First C Program

Patni Internal

Page 7 of 154

C Programming

2 Operatorsand Type Conversion

2.1 QOperators

An operator is a symbol which represents a particular operation that can be performed on some
data. The datais called as operand. The operator thus operates on an operand. Operators could be
classfied as “unary”, “binary” or “ternary” depending on the number of operandsi.e, one, two or

three respectively.

2.1.1 Arithmetic operators

The binary arithmetic operators are +, -, *, / and the modulus operator %. Integer division
truncates any fractional part. Modulus operator returns the remainder of the integer division. This
operator is applicable only for integers and cannot be applied to float or double.

The operators *, / and % all have the same priority, which is higher than the priority of binary
addition (+) and subtraction (-). In case of an expression containing the operators having the same
precedence it gets evaluated from left to right. This default precedence can be overridden by
using a set of parentheses. If there is more than one set of parentheses, the innermost parentheses
will be performed first, followed by the operations with-in the second innermost pair and so on.
E.g..

34 + 5 = 39
12 -7 =5
15 * 5 =75
14/ 8 =1
17 %6 =5

2.1.2 Relational operators

Relationa operators are used to compare two operands to check whether they are equal, unequal
or one is greater than or less than the other.

Operator Description
> Greater than
>= Greater than or equalsto
< Lessthan
<= Less than or equalsto
== Equality test.
I= Non-equality test.

Table 2.1: Relational operators.

The value of the relational expression is of integer type and is 1, if the result of comparison is
trueand O if itisfalse.

E.g.
14 > 8 has the value 1, as it is true
34 <= 19 has the value 0, as it is fal se
™ A 7 1 Patni Internal Page 8 of 154

C Programming

2.1.3 Logical operators

The logicd operators && (AND), || (OR) alow two or more expressions to be combined to
form a single expression. The expressions involving these operators are evaluated |eft to right, and
evaluation stops as soon as the truth or the falsehood of the result is known.

Oper ator

Usage

&&
|

Logicd AND. Returns 1
eXpressions are non-zero.
Logical OR. Returns 1 if either of the
expression is non-zero.

Unary negation. It converts a non-zero
operand into 0 and a zero operand into 1.

if both the

Table 2.2: Logical operators.

Note: All theexpressions, which are part of acompound expression, may not be evaluated,

when they are connected by & & or || operators.

Exprl Expr2 Exprl & & Expr2 Exprl || Expr2
0 0 0 0
0 non-zero 0 1
non-zero 0 0 1
non-zero non-zero 1 1

Table 2.3: Operation of logical && and || operators

2.1.4 Unary Increment and Decrement operators

The unary increment operator (++) increments the value of the operand by 1. Similarly the

unary decrement operator (--) decrements the value by 1.

E.g.

int x = 0;

int p = 10;

X = p++ | ----------- > Resul t: x =10
/1 Now p will have a value 11. (Postfixing)
X = ++p; ----------- > Resul t X =12
/[l Now p will have a value 12. (Prefixing)
p=11 @ ----------- > p =11

Postfixing: The unary operators (increment or decrement) when used after the variable, as in
p++, acts as a postfix operator. In the expression p++, p is incremented after its value has been

used i.e, assigned to x.

Prefixing: The unary operators (increment or decrement) when used before the variable, as in
++p, acts as a prefix operator. The expression ++p increments p before its value has been used

i.e., assigned to x.

Patni Internal Page 9 of 154

C Programming

The table below contains some more examples on unary operators.

Values before operations Expression Values after operations
a=1 b= at+; b=1a=2
a=1 b=++a b=2a=2
a=1 b=a-; b=1,a=0
a=1 =--a b=0,a=0
a=1 b=8- ++g b=6,a=2

a=1c=5 b=at++ --C; b=5a=2c=4
a=1c=5 b=++a- c-- b=-3,a=2,c=4

Table 2.4: Examples for unary operators

2.1.5 Bitwise operators

The bitwise operators provided by C may only be applied to operands of type char, short, int
and long, whether signed or unsigned.

& bi twi se AND
| bitw se inclusive OR
N bitw se excl usive OR

2.1.6 Ternary/Conditional Operator

The conditional expressions written with the ternary operator “?:” provides an aternate way to
write the if conditiona construct. This operator takes three arguments.

The syntax is.
expressionl ? expression2 :

expr essi on3

If expressionl is true (i.e. Vaue is non-zero), then the vaue returned would be expression2
otherwise the vaue returned would be expression3.
Eg:

int num res;
scanf (“%”, #
res =(num>=0?21: 0);

res contains 1 if numis positive or zero, else it contains O.

int big, a, b, c;

big=(a>b ? (a>c 3: 4) (b >c?6: 8));

bi g contains the highest of all the three nunbers.

Patni Internal Page 10 of 154

C Programming

2.1.7 Compound Assignment operators

Most of the binary operators like +, * have a corresponding assignment operator of the form op=
where op isone of +, -, *, /, %, &, |, *. The explanation of these compound assignment operators
is given below in the table 2.5.

Operator
V + = expr

V - =
expr

vV * = expr
v/ =expr
v % =expr
vV &= expr

V |= expr

vV A= expr

Explanation
Value of the expression (expr) is added with the value of variable (v) and stores
the sum in same variable (v).
Value of the expression (expr) is subtracted from the value of variable (v) and
stores the balance in variable (v).

Vaue of the expresson (expr) is multiplied with the value of variable (v) and
stores the product in variable (v).

Value of the expression (expr) divides the value of (v) and stores the quotient in v.
Value of the expression (expr) divides the value of v and stores the remainder in v.
Value of the expresson (expr) is ANDed bitwise with the value of
variable (v) and storestheresult in variable (v).

Vaue of the expression (expr) is ORed bitwise with the value of variable (v) and
stores the result in variable (v).

Vaue of the expression (expr) is XORed bitwise with the vaue of variable (v) and
stores the result in variable (v).

Table 2.5: Explanation of Compound Assignment operators

Consder the valuei = 15 for all the expressions given in the table below.

Operator Expression Result
i+=3 i=i+3 =18
i-=2 i=i-2 i=13
i*=4 i=i*4 i =60
i/=3 i=i/3 i=5
i %=4 i=i%4 i=3

Table 2.6: Examples for Compound Assignment operators

2.1.8 The sizeof operator

The sizeof operator returns the number of bytes the operand occupies in memory. The operand
may be avariable, a constant or a data type qualifier.

/* sanpl e program using sizeof operator */

#

i ncl ude <stdi o. h>

voi d mai n(voi d)

{

int sum

printf(“%d \n",
printf(“% \n",
printf(“% \n”,
printf(“%d \n",

si zeof (fl oat));
si zeof (sum) ;
si zeof (char));
sizeof (G));

Patni Internal Page 11 of 154

C Programming

Fig 2.1: Sample Code using sizeof operator
The output of the above program will be compiler dependent.
The sizeof operator is generaly used to determine the lengths of entities called arrays and

structures when their sizes are not known. It is aso used to alocate memory dynamicaly during
program execution.

2.2 Precedence and order of evaluation

The hierarchy of commonly used operators is shown in the table 2.7 below.

Operators Associativity
I ++ -+ - (unary) right to left
* |l % left to right
+ - (binary) |eft to right
< <= > >= left to right
I= left to right
left to right
left to right
left to right
left to right
left to right
right to left
*= = %= &= "= = right to left
Table 2.7: Precedence and Associativity of operators

D= >l
e Qo

+
1
1

1

In case of a tie between operations of same priority then they are evaluated based on their
associativity. You can use parentheses to change the order of evaluation. If there is more than one
set of parentheses, the innermost parentheses will be performed firgt, followed by the operations
with-in the second innermost pair and so on.

C, like most languages, does not specify the order in which the operands of an operator are
evauated. Smilarly, the order in which function arguments are evaluated is aso not specified. So
the statement

printf(“% %\ n”, ++n, power(2, n)); /* AVOD */ |

can produce different results with different compilers, depending on whether n is incremented
before power is called. The solution is to write

++n;
printf(“% %\n”, n, power(2, n));

2.3 Typeconversion

When an operator has operands of different types, they are converted to a common type according
to a smal number of rules. In general, the only automatic conversions are those that convert a

Patni Internal Page 12 of 154

C Programming

“narrower” operand into a “wider” one without losing information, such as converting an integer

to afloating-point vaue.
2.3.1 Implicit arithmetic conversions

If abinary operator like +, -, * or / that takes two operands of different types then the “lower”
type is promoted to the “higher” type before the operation proceeds. The result is of the

“higher” type.

Operator1 Operator 2 Result Operator1 Operator 2 Result
char Char char int float float
char Int int int double double
char Float float long int float float
char Double double double float double

Table 2.8: The conversion rules for different data types.

An arithmetic operation between an integer and integer always yields an integer result.
Operation between float and float aways yields a float result. Operation between float and

integer always yields afloat result.

Operation Result Operation Result
52 2 2*5 10
5.0/2 2.5 2.0+5 7.0
5/2.0 2.5 5.0/2.0 2.5
502 10.0 2/5 0

Table 2.9: Arithmetic operations.

2.3.2 Type conversion in Assignments

In certain cases the type of the expression and the type of the variable on the left-hand side of
assignment operator may not be same. In such a case the value of the expression promoted or
demoted depending on the type of the variable on the left-hand side of = operator.

E.g..

int p, iNum= 30;
float b = 3.5;

p = b;

b = iNum

In above example, the first assignment will store 3 to the variable p, because p is an integer
variable, it cannot store afloat value. The float is demoted to an integer and its value is stored.
Exactly opposite happensin the next statement. Here, 30 is promoted to 30.000000 and then
stored in b, since b isafloat variable.

2.3.3 Type casting

Explicit type conversions can be forced in any expression, with a unary operator cdled acast. In
the construction

| (type- nane) expression |

Patni Internal Page 13 of 154

C Programming

The expression is converted to the named type by the conversion rules. The precise meaning of a

cast is asif the expression were assigned to avariable of the specified type, which isthen used in
place of the whole construction.

E.g..
i nt i Count;
float fval = 34.8f;
i Count = (int) fval; /* iCount contains 34 */
— & 1 Patni Internal Page 14 of 154
VA AN
i -y" .I'.\

C Programming

3 Control Flow

The control flow statements of a language specify the order in which computations are
performed. They determine the “Flow of Control” in a program.

C programming language provides three types of control statements.

1. Sequence Control Statements
The sequence control statement ensures that the instructions in the program are executed
in the same order in which they appear in the program.

2. Selection or Decision Control Statements
The decision and case control statements alow selective processing of a statement of a
group of statements. These are aso called as Conditional Statements.

3. Repetition or Loop Control Statements
The Loop control statement executes a group of statements repeatedly till a condition is
satisfied.

3.1 Statementsand blocks

An expression becomes a statement when a semicolon follows it. Braces { and } are used to
group declarations and statements together into a compound statement, or block, so that they are
syntactically equivaent to a single statement. There is no semicolon after the right brace that ends
ablock.

3.2 Sdection or Decision Control Statements

The major decison making constructs of C language are:
1. Theif statement

2. Theif-ese statement
3. The switch statement

3.3 Theif statement

The if statement is used to specify conditiona execution of a program statement, or a group of
statements enclosed in braces.

The general format of if statement is:

if (expression)

statement-block;

}

program statement;

Fig 3.1: Format of |F statement

— —~ 7 Patni Internal Page 15 of 154

C Programming

When an if statement is encountered, expression is evaluated and if its value is true, then
statement-block is executed, and after the execution of the block, the statement following the if
statement (program statement) is executed. If the value of the expression is fase, the statement-
block is not executed and the execution continues from the statement immediately after the if
statement (program statement).

/* Programto print the maxi mumof the two given nunbers
using if statenment */
voi d mai n(voi d)
{

int nl, n2, max;

printf(“Enter two nunbers: ");

scanf (“%%”, &nl, &n2);

max = nl;

if (n2 > nl)

mx = n2;

printf(“The Maxi mrum of two nunbers is: % \n”, nax);

}

Fig 3.2: Program to print the maximum of the two numbersusing if statement

3.4 Theif ..elsestatement

The purpose of if-else statement isto carry out logical tests and then, take one of the two possible
actions depending on the outcome of the test.

The genera format of if-else statement is.

if (expression)

/* if block */
true-statement-block;
}
else
{
/* else block */
false-statement-block;
}

Fig 3.3: Format of if..else statement

If the expression is true, then the true-statement-block, which immediately follows the if is
executed otherwise, the fal se-statement-block is executed.

Patni Internal Page 16 of 154

C Programming

/* Programto check whether the given nunber is even or odd
*/
voi d mai n(voi d)

{ .
int num
printf(“Enter a nunber: ”);
scanf (“9%d”, &num ;
if ((num%?2) == 0)
printf(“% is even \n", num;
el se
printf(“%d is odd \n”, num;
}

Fig 3.4: Program to check whether the given number iseven or odd

The group of statements after the if upto but not including the else is known as an if block. The
statements after the else form the else block. When the if block or the else block contains more
than one statements they have to be enclosed in a pair of { } braces. When the if or else block
contain only one statement it need not be enclosed in braces as written in the example above.

Note: Its dways a good practice to enclose the if, else or any loop blocks in the braces for
maintainability of the code.

3.5 Nested conditional constructs

The if statement can be included within other if block, the else block or of another conditional
statement.

if (expressionl)

true-statement1-block;
if (expression2)

true-statement2-block;

}
}
else
{
false-statement1-block;
}

Fig 3.5: Format of Nested if statement

3.6 Thedseif .. statement

This sequence of if statements is the most general way d writing a multi-way decision. The
expressions are evaluated in order; if any expression is true, the statement associated with it is
executed, and this terminates the whole chain. can be included within the if block, the else
block or of another conditional statement.

Patni Internal Page 17 of 154

C Programming

if (expressionl)
statement-block1;

elseif (expression2)

{
statement-block2;
}
else
default-statement-block;
}

Fig 3.6: Format of else..if statement

The last else part handles the “none of the above’ or default case where none of the other
conditions is satisfied. If there is no explicit action for the default then the dse block can be
omitted.

/* Program to calculate and print telephone bill for customer s by checking certain conditions
*/
void main(void)

int units, custno;
float charge;
printf(* Enter customer no and units consumed: ”);
scanf(*%d%d”, & custno, & units);
if (units<=200)
charge = 0.5* units;
elseif (units <= 400)
charge =100 + 0.65 * (units- 200);
elseif (units <= 600)
charge =230+ 0.8 * (units- 400);
else
charge = 390 + (units- 600);
printf(* Customer No: %d consumed %d units\n”, custno, units);
printf(“ The total bill amount is: %.2f \n”, charge);

Fig 3.7: Program to calculate and print telephone bill for customers

3.7 Theswitch statement

The switch statement is a multi-way decision that tests whether an expression matches one of a
number of constant integer values, and branches accordingly.

Patni Internal Page 18 of 154

C Programming

switch (expression)
{
case valuel:
statement-block1;
break;
case valuez:
statement-block 2:
break;
default:
default-block;

Fig 3.8: Format of switch statement

3.8 Repetition or L oop control statements

These statements are also called as Iterative Structure or Program Loop. This alows a
sequence of program statements to be executed severa times, either a specified number of times
or until a particular condition is satisfied.

It congsts of an entry point that may include initiaization of loop variables, a loop continuation
condition, aloop body and an exit point.

C has three mgjor loop control methods:
1. Thewhileloop
2. Thedo-whileloop
3. Thefor loop

The loop continuation condition may be tested before the loop body is executed as in case of
while and for loops. In such case, the loop is referred to as a pre-test 1oop.

The case in which the condition is tested after the execution of the loop body, as in case of do-
while loop, such aloop is caled as post-test |oop.

3.8.1 The while Loop

The generd format of awhileloopis:

initialization;
while (expression)
{
statements;
}
Fig 3.9: Format of while loop
. B Patni Internal Page 19 of 154

C Programming

The expression is evaluated first. If the expression evaluates to non-zero (true), the body of the
loop is executed. After execution of the body, the expression is once again evaluated and if it is
true, the body of the loop is executed once again.

This process continues until the result of the expression becomes zero (false). The iteration is then
terminated and the control passes to the first statement that follows the body of the while loop. If
the expression evaluates to zero (false) at the very first time, the body of the loop is not executed
even once.

/* Programto print nunbers 1 to 10 using while | oop */
voi d mai n(voi d)

{
int num= 1;
while (num <= 10)
{
printf(“%d \n”, num;
numt+;
}
}

Fig 3.10: Program to print numbers 1 to 10 using while loop

3.8.2 The do...while loop

The generd format of ado...whileloop is.

initialization;
do
{

statement-block;

while (expression);

Fig 3.11: Format of do...while loop

In case of do...while loop, the body of the loop is executed, followed by the evaluation of the
expression. If the expression evauates to non-zero (true) the body of the loop is again executed.

The iteration continues until the expression evauates to zero (false). The iteration is then
terminated. If the expression evaluates to zero (false) at the very first time, the body of the loop
is aready executed once.

Patni Internal Page 20 of 154

C Programming

/* Programto print nunbers 1 to 10 using do.while |oop */
voi d mai n(voi d)

{
int num= 1;
do
{
printf(“% \n", numt+);
}
while (num <= 10);
}

Fig 3.12: Program to print numbers 1 to 10 using do...while loop

Note: Since the exit condition is evaluated at the bottom of the loop, in case of do...while, the
body of the loop is executed at least once.

In case of while and do...while loops, the loop counter is initiaized before the control enters the
loop and it must be incremented/decremented within the body of the loop.

3.83 Thefor Loop

The for loop is very flexible and is preferable when there is a smple initidization and increment,
as it keeps the loop control statements close together and visible at the top of the loop.

The genera format of the for loop is:

for (exprl; expr2; expr3)

statement-block;

Fig 3.13: Format of for loop

Thisisequivalent to

expr 1,
whil e (expr2)
{

st at enent - bl ock;
expr 3;

}

The three components of for loop are expressons. Most commonly, exprl (initidization) and
expr3 (increment) are assignments or function cals and expr2 (test condition) is a relational
expression.

Patni Internal Page 21 of 154

C Programming

The sequence of control flow or the evaluation of these three expressionsiis.

1. Theinitidization (exprl is evauated) is done only once at the beginning.

2. Then the condition (expr2) is tested. |If satisfied (evaluates to non-zero) the body of the
loop is executed, otherwise the loop is terminated.

3. When the expr2 evaluates to non-zero the body of the loop is executed. Upon reaching
the closing braces of for, control is sent back to for statement, where the increment
(expr3) is performed.

4. Again the condition is tested and will follow the path based on the results of the test
condition.

/* Programto print numbers 1 to 10 using for |oop */
voi d mai n(voi d)

L
I nt num
for (num= 1; num <= 10; numt+)
{
printf(“% \n”, num;
}
}

Fig 3.14: Program to print numbers 1 to 10 using for loop
3831 Thefeaturesof thefor loop

One or more variables can beinitiaized (exprl) at atime in for loop.
for (p =0,9=1; p<10; pt++)

This has two partsin its initidization separated by a comma.

Smilar to initialization, the increment section (expr3) may aso have more than one part.
for (m =0, n =25 m<n; m++, n--)
This has two parts in increment section, m++ and n --, separated by a comma.

The test condition (expr2) may have any compound relation and testing need not be limited only
to loop control variable,
for (i=1,sum=0;i<10&& sum <50; i++)

This loop uses the compound test condition with loop control variable i and sum.

Any of the three parts can be omitted, athough the semi colon must remain.
for (; p<100;)

Both initiaization (exprl) and increment (expr3) sections are omitted.
If the test condition (expr2), is not present, it is taken as permanently true, so

for (;;){

statement-block;

isan “infinite’ loop, presumably to be broken by other means, such as a break or return.

— B Patni Internal Page 22 of 154

C Programming

3.9 Loop Interruption

It is sometimes convenient to be able to exit from a loop other than by testing the loop
termination condition at the top or bottom.

3.9.1 The break statement

The break statement provides an early exit from for, while, and do, just as from switch. A break
causes the innermost enclosing loop or switch to be exited immediately.

/* Programto print sumof prinme nunbers between 10 and 100
*/
voi d mai n(voi d)

{
int sum=20, i, j;
for (i = 10; i <= 100; i++)
{
for (j =2,] <=sqrt(i); j++)
if (i %) = = 0)
br eak;
if (j > sqrt(i))
sum += i;
}
printf (“%d \n", sum;
}

Fig 3.15: Program to print sum of prime numbers between 10 and 100

The break statement bresks the inner loop as soon as the first divisor is found, but the iteration
continues in the outer loop for the next value of i.

3.9.2 The continue statement

The continue statement is used to bypass the remainder of the current pass through a loop. That
is, it passes the flow of control to the next iteration within for, while or do loops.

In the while and do, this means that the test part is executed immediately; in the for, control
passes to the increment step. The continue statement applies only to loops, not to switch.

for (i =0; i <n; i++4)

i1f (arr[i] < 0)
conti nue;
sum += a[i];

Patni Internal Page 23 of 154

C Programming

The above code fragment calculates the sum of only the positive elements in the array arr;
negative values are skipped.

3.9.3 The exit function

The standard library function, exit () is used to terminate execution of the program. The
difference between bresk statement and exit function is, break just terminates the execution of
loop in which it appears, whereas exit () terminates the execution of the program itself.

= F ~r T Patni Internal Page 24 of 154

C Programming

4 Functions

A function is a self -contained block of program that performs some specific, well-defined task. A
C program consists of one or more functions rather than one large main() function. printf() and
scanf() are two predefined functions that we have used so far.

Functions break large complicated computing tasks into smaller and simpler ones. Separating a
program into functions aso aids in maintenance and enhancement of programs by locdlizing the
effects of changes. A C program may reside in one or more source files. Source files may be
compiled separately and loaded together, dong with previoudy compiled functions from
libraries. This helps programmers to build on the existing functions by creating their own
functions and tying them to the existing library.

4.1 Fundamentals of functions

There are basically two types of functions.

1. Library functions
2. User-defined functions

The commonly required functions written, compiled and placed in libraries are called as “Library
Functions’. Some examples of library functions are printf() and scanf() etc.

The functions written by the user, are termed as “User Defined Functions’. In user-defined
functions, user has freedom to choose the function name, return data type and the arguments
(number and type). There is no conceptual difference between the user defined and library
function. The method of calling both the functionsis same.

4.2 Function declaration and prototype

The function can be declared with a prototype of its parameters.

The genera form of afunction declaration is.

return-type function-name (argument declaration);

Fig 4.1: Format of a function declaration

where,
return-type: The datatype of the value, which is returned.
function-name: The name of the function defined.
argument declaration: types and names of the parameters of the function,
separated by commas.
~w A 77 Patni Internal Page 25 of 154

C Programming

Thus the declaration

| int Cube(int); |

declares a function Cube that returns integer value with one argument of type integer.

Function declaration is aso called as function prototype, since they provide modd or blueprint of
the function.

4.3 Function definition

A function definition introduces a new function by declaring the type of value it returns and its
parameters, and specifying the statements that are executed when the function is called.

The genera format of afunction definition is.

return-type function-name (parameters declaration)

{

local variable declaration;
statements;

Fig 4.2: Format of a function definition
where,
return-type: the data type of the value, which is returned
function-name: Name of the function defined
parameter declaration: Types and names of the parameters of the function,
separated by commas.

Functions in C are used not only to determine values, but also to group together related actions,
such as displaying the headers of areport.

A function, that does not return any value, but only performs some operation, is declared with the
return-type as void. Similarly if the function does not take any parameters then it is declared with
parameter declaration of type void. The specification of function type is optiona for some
compilers. The rules for naming functions and parameters are the same as for naming variables.

Thus the function

double area(int n, double d)

/l function body
}

Defines area to be a function that returns a value of type double, and has two parameters — n of
type integer and d, of type double.

The function body consists of variable declarations followed by any vaid C-statements, enclosed
within the curly braces.

Patni Internal Page 26 of 154

C Programming

User may send as many parameters to the function as he wishes, but the function itself can return
one and only one value.

4.4 Function call

A function call is an expression of the form:

function-name (ar gument-list);

Fig 4.3: Format of a function call
where,
Function-name: Name of the function called
Argument-list : A comma separated list of expressions that constitute the arguments to
the function.

Thusthe statement
AddVdue (nlndex);
isafunction cal that invokes the function named AddV a ue with the argument nindex.

/* Exanpl e of function usage */
include <stdio.h>
main ()
{
void sub (void); /* Function prototype */
printf (“In main function, before function call.\n");
sub (); /* Function call */

printf (“In main function, after function call. \n");
}
void sub ()
{
printf(“Welcome to the function sub \n”);
}

Fig 4.4 : Example of function usage

The main() function gets executed first. As the control encounters the statement sub();, the
activity of main() is temporarily suspended and control passes to the sub(). After execution of
sub(), the control again returns to main(). main() resumes its execution from the statement after
sub().

Thus main() becomes the “calling function” asiit calls the function sub() and sub() becomes the
“called function” asit is caled in main().

If a program contains multiple functions, their definitions may appear in any order, though they
must be independent of one another. That is, one function definition cannot be embedded within
another.

Patni Internal Page 27 of 154

C Programming

There is no limit on the number of functions that might be present in a C program. Each of the
function is called in the sequence specified by the function calsin the main().

45 Thereturn satement

In the figure 4.4, the moment closing brace of the called function (sub) was encountered, the
control returned to the calling function (main). No separate return statement was necessary to
send back the control as the called function is not going to return any value to the caling
function.

However, in functions, which are expected to return some values, it is necessary to use the return
statement.

Syntax:

return (expression);
or
return;

Fig 4.5: Syntax of return statement

On executing the return statement,

The vaue of the expression, which is just after the return keyword, is returned to the caling
function.

Control is transferred back to the calling function.

If the expression is not present, it returns an integer or void depending on the compiler that you
use.

The expression can be a constant, a variable, a user defined data structure, a general expression or
afunction call.

If the data type of the expression returned does not match the return type of the function, it is
converted to the return type of the function.

For example, in the function

i nt convert ()

{
}

return 10. 32;

Fig 4.6: Sample code for return statement
the return statement is equivaent to

return (int 10.32) ;
and returns 10 to the calling function.

If you do not have a return statement in the function, the calling function will receive the control,
but no value. Such atype of function is known as avoid function.

—— ~ q Patni Internal Page 28 of 154

C Programming

More than one return statement can be used in the same function as shown bel ow.

int factorial (int n)
{
int i,result;
i f(n<0)
return -1;
i f (n==0)
return 1;
for(i=1,result=1;i<=n;i++)
result *=i;
return result;

Fig 4.7: Sample code using mor e than one return statement
The first executed return statement terminates the execution of the function and the rest of the

function body is not executed. Thus, if factorid is caled with arguments O, the function will
return with the value 1 and for loop will not be executed.

4.6 Function arguments

The function parameters are the means of communication between the caling and the called
functions. There is no limitation on the number of parameters passed to a function.

Formal parameters.

These, commonly caled as parameters, are given in the function declaration and function
definition.

Actual parameters:

These, commonly caled as arguments, are specified in the function call.
The following conditions must be satisfied for afunction call:

1. The list of arguments in the function call and function declaration must be the
same.

2. The data type of each of the actual parameter must be same as that of formal
parameter.

3. Theorder of the actual parameters must be same as the order in which the formal
parameters are specified.

However, the names of the formal parameters in function declaration and definition are unrelated.
They can be same or different.

— —~ 7 Patni Internal Page 29 of 154

C Programming

#i ncl ude <stdi o. h>
voi d mai n(voi d)

{
int calcsumiint, int, int);
int a, b, ¢, sum
printf("Enter three nunbers");
scanf ("%%%", &a, &b, &c);
sum = cal csum(a, b, c);
printf("The sumis : %", sum;
}
int calcsum(int x, int y, int z)
{
int d;
d =x +y + z;
return (d); ---> [Integer value of d is returned,|
}

Fig 4.8: Sample code for function arguments

In this program, from the function main() the values of a, b and ¢ are passed on to the function
calcsum(), by making a call to the function calcsum() and passing a, b, and c in the parentheses:

| sum = cal csun(a, b, c); |

In the calcsum() function these values get collected in three variables x, y, z.

| calcsun(int x, int y, int z); |

Thevariablesa, b and c are called * actual parameters’, whereas the variables x, y and z are called
‘formal parameters. Any number of arguments can be passed to a function being caled.
However, the type, order and number of the actual and forma arguments must aways be the
same.

4.6.1 Passing Arguments to a Function

C provides following two mechanisms to pass arguments to a function:

1. Passarguments by value (Call by value)
2. Passarguments by address or by pointers (Call by reference)

46.11 Call By Value

Functions in C pass dl arguments by value. It means the contents of the arguments in the caling
functions are not changed, even if they are changed in the called function. The contents of the
variable are copied to the forma parameters of the function definition, thus preserving the
contents of the argument in the calling function.

Patni Internal Page 30 of 154

C Programming

The following example illustrates the concept of passing arguments by value.

/* Programto denonstrate pass by value */
#i ncl ude<st di o. h>
voi d mai n(voi d)
{
int num = 100;
void nodi fy(int);
printf(“lIn main, the value of numis % \n”, num;
nmodi fy(num ;
printf(“Back in main, the value of numis % \n”, nunj;

void nmodi fy(int n)

{

printf(“ln function value of numis % \n”, n);

n = 200;

printf(“In function changed value of numis % \n’, n);
}
Output

In main, the value of num is 100

In function value of num is 100

In function changed value of num is 200
Back in main, the value of num is 100

Fig 4.9: Sample code for passing arguments by value

The variable num is assigned a value of 100 in the function main(). During execution of the
function, the value of the variable n is changed o 200, but the vaue of the variable num in the
function main remains the same as prior to the execution of the function cal i.e., 100.

4.6.1.2 Call By Reference
Instead of passing the value of a variable, we can pass the memory address of the variable to the

function. It is termed as Call by Reference. We will discuss call by reference when we learn
pointers.

4.7 ScopeOf Variables

The part of the program within which a variable/constant can be accessed is called as its scope.

By default the scope of a variable is loca to the function in which it is defined. Loca variables
can only be accessed in the function in which they are defined; they are unknown to other
functions in the same program.

Setting up variables that are available across function boundaries can change the default scope of
varigble. If avariable is defined outside any function at the same level as function definitions is
caled as External variable.

—— ~ q Patni Internal Page 31 of 154

C Programming

Scope of an externa variable is the rest of the source file starting from its definition.

Scope of an external variable defined before any function definition, will be the whole program,
and hence such variables are sometimes referred to as Global variables.

Following code uses external variables:

int i, j;
voi d input()
scanf (“% %", &, &);
}
int k;
voi d conpute()
{
k = power (i, j);
}
voi d out put ()
{
printf(“i=% j=% k=%", i, j, k);
}

Fig 4.10: Sample code using external variables

4.8 Storage Classes

All variables have a data type; they aso have a‘ Storage class' . The storage class determines the
lifetime of the storage associated with the variable. If we don't specify the storage class of a
variable in its declaration, the compiler will assume a storage class depending on the context in
which the variable is used.

From C compiler’s point of view, a variable name identifies some physica location within the
computer where the string of bits representing the variables' value is stored. Basicaly, there are
two types of locations in a computer where such a value is kept. They are “Memory” and “CPU
Registers'.

It isvariable' s storage class, which determines in which of these two locations the value is stored.

A variable' s storage class gives the following information:

» Where the variable would be stored.

» What will be the default initid value

» What is the scope of the variable

» What isthelife of the variable, i.e. how long would the variable exist.

—— ~ q Patni Internal Page 32 of 154

C Programming

There are four types of storage classesin C:

Automatic Storage Class
Static Storage Class
Register Storage Class
External Storage Class

oD PE

48.1 Automatic Variables

A variable is said to be automatic, if it is alocated storage upon entry to a sesgment of code, and
the storage is reallocated upon exit from this segment.

Features of a variable with an automatic storage class are as follows:

Storage Memory
Default initial value | Garbage value
Scope Local to the block, in which it is defined
Life Till the control remains within the block, in which it is defined.

A vaiable is specified to be automatic by prefixing its type declaration with the storage class
specifier — auto - in the following manner

aut o data-type vari abl e- nane; |

By default, any variable declared in afunction is of theaut omati ¢ st orage cl ass. They
are automaticaly initidized at run-time.

Thus the declarations of the variablesi and result in

int num(int n)

inti, result;

}

is equivaent to

int num(int n)

{
}

autoint i, result;

and declare i and result to be automatic variables of type integer.

An automatic variable may be initialized at the time of its declaration by following its name with
an equa sign and an expression. The expression is evaluated and its value is assigned to the
automatic variable each time the block is entered.

Patni Internal Page 33 of 154

C Programming

Thus, the auto variable result, when initidized as

int num(int n)

{
}

autoint i, result=1;

will be set to 1 each time num is caled. The function parameters can aso be used in the
initidization expresson.

Thus, the auto variable last when initialized as

int num(int n)

{
}

autoint i, result=n-1;

is set to one less than the value of the actual argument supplied with a call to num

Note: In the absence of explicit initidization, the initid vaue of an automatic variable is
undefined.

4.8.2 Static Variables

A varigble is said to be static, if it is allocated storage at the beginning of the program execution
and the storage remains alocated until the program execution terminates. Variables declared
outside all blocks at the same level as function definitions are always static.

Features of avariable with a static storage class are as follows

Storage Memory
Default initial value Zero
Scope Locdl to the block, in which it is defined
Life Vaue of the variable persists between different function calls.

Within a block, a variable can ke specified to be static by prefixing its type declaration with the
storage class specifier atic in the following manner

| static data-type vari abl e- nane;

Thus the declarations of the variablei in

int num(void)

staticint i;

}

declaresi as a static variable of type integer.

Patni Internal Page 34 of 154

C Programming

Variables declared as static could be initidized only with constant expressions. The initialization
takes place only once, when the block is entered for the first time.

The following program illustrates the difference between auto and static variables.

#i ncl ude <stdi o. h>
voi d mai n(voi d)

{
void incr(void);
int i;
for(i =0; i < 3; i++4)
incr();

void incr()

{
int auto_ i = O;
static int static i = 0;
printf(“auto=% \t static=%d\n“, auto_i++ static_i++);
}
Fig 4.11: Sample code for function arguments
Qut put
aut 0=0 static=0
aut o=0 static=1
aut o=0 static=2

The output shows the value of auto i is O for each line of display, and that of static_i incremented
by 1 from O through 2.

While auto i is assigned the value 0, each time the function incr() is caled, static i is assigned
the value 0 only once, when incr() is first executed and its value is retained from one function call
to the next.

4.8.3 Reqister Variables

In case when faster computation is required, variables can be placed in the CPU’s interna
registers, as accessing internal registers take much less time than accessing memory. Therefore,
if avariable is used at many placesin aprogram it is better to declare its storage class as reg ster.

Features of a variable with aregister storage class are as follows

Storage CPU registers
Default initial value | Garbage value
Scope Local to the block, in which it is defined
Life Till the control remains within the block in which it is defined
. B Patni Internal Page 35 of 154

C Programming

A variable can be specified to be in register by prefixing its type declaration with the storage
class specifier register in the following manner

regi ster data-type vari abl e- nane; |

But this is entirely upto the compiler to decide whether a variable & to be stored as a register
variable or should be automatic.

4.8.4 External Variables

If the declared variable is needed in another file, or in the same file but at a point earlier than that
a which it has been defined, it must be declared of storage class externdl.

Features of a variable with an externa storage class are as follows

Storage Memory
Default initial value Zero
Scope Globa
Life Aslong as the program’s execution doesn’t come to an end.

A variable has to be declared with the keyword extern before it can be used.

An extern variable declaration is of the form

extern type-identifier; |

The declaration of an externa variable declares, for the rest of the source file, the type of the
variable but does not alocate any storage for the variable.

The definition of an external variable, specified without the keyword extern, causes the storage to
be allocated, and also serves as the declaration for the rest of that source file.

An initid variable can be initidlized only a the time of its definition. There must be only one
definition of an externa variable; al other files that need access to this variable must contain an
extern declaration for this variable.

All function names are considered globa and are visible in any part of the program, be it the file
in which the function has been defined or any other file that is part of the source for the program.

Thus afile need not contain extern declarations for functions external to it.

—— ~ q Patni Internal Page 36 of 154

C Programming

The following example shows the definition, declaration and use of external variables. The
program congists of two modules main.c and compute.c.

main.c compute.c
#include <stdio.h> #include <stdio.h>
int add(void); #define MODULUS 10

/* Declaration of i & k */
inti, k;

int main(void)

{
printf(“ Enter valuesfor i and k”);
scanf(*%d %d”, &i, &K);
printf(“i=%d”, add());
return O;

}

/* Extern declaration of i & k: No new variables
are created */

externint i, k;
/* Declaration and definition of j */
intj = MODULUS,

int add()
{
i +=] +k;
return(i);
}

Fig 4.12: Sample code for the usage of external variables

The declarations common to more than one module are usually collected in a single file, known
as the header file. These are then copied into the modules that use them by means of the #include
directive. By convention, the names of the header files are suffixed with .h.

For instance, the preceding program can be rewritten by collecting constants and externa
declarationsin afile named global .h as follows:

/*********global .h***************/

#include <stdio.h>

define MODULUS 10
externint ik;

int j=MODULUS

main.c

#include <stdio.h>
int add(void);
intik;

int main(void)

{

printf(“ Enter valuesfor i and k”):

scanf(“ % d%d” ,&i,&Kk);
printf(“i=%d” ,add());

return 0;
}
=y, Patni Internal Page 37 of 154
A L
:__.-"} }'lfr" '.f-

C Programming

compute.c
finclude " global.h" User-defined header files are to be included by
int add(void) enclosing it within double quotes along with full
{ path or otherwise it would be searched in the
i+=j +k; current directory
return(i);

}

For a very large program, there may be more than one header file; each module then includes
only those header files that contain information relevant to it.

Each module of a large program is separately compiled. Separate compilation speeds up

debugging, as the whole program does not have to be recompiled if the changes are confined to
one module.

49 Variableinitialization

In the absence of explicit initidization, externd and static variables are guaranteed to be
initialized to zero; automatic and register variables have undefined (i.e., garbage) initial values.

For external and static variables, the initializer must be a constant expression; the initidization is
done once, conceptualy before the program begins execution. For automatic and register
variables, it is done each time the function or block is entered. For automatic and register
variables, the initidizer is not restricted to being a congtant: it may be any expression involving
previoudy defined values, even function cdls.

49.1 Scoperules

The functions and externa variables that make up a C program need not all be compiled at the
same time; the source text of the program may be kept in severd files, and previoudy compiled
routines may be loaded from libraries.

The scope of an identifier is the part of the program within which the identifier can be used. For
an automeatic variable declared at the beginning of a function, the scope is the function in which
the identifier is declared. Locd variables of the same name in different functions are unrelated.
The same is true of the parameters of the functions, which are in effect local variables.

The scope of an externa variable or a function lasts from the point at which it is declared to the
end of the file. On the other hand, if an externa variable is to be referred to before it is defined, or
if it is defined in a different source file from the one where it is being used, then a1 extern
declaration is mandatory.

4.10 Recursion

Recursion is a process by which a function calls itself repeatedly, until some specified condition
has been satisfied. The process is used for repetitive computations in which each action is stated
in terms of a previous result. Many iterative problems can be written in this form.

— Patni Internal Page 38 of 154

C Programming

Functions may be defined recursively; that is, a function may directly or indirectly call itsef in
the course of execution, If the call to a function occurs inside the function itsalf, the recursion is
said to be direct. If afunction calls another function, which in turn makes a call to the first one,
the recursion is said to be indirect. The chain of calls may be more involved; there may be severa
intermediate calls before the origina function is called back.

/* To calculate factorial of an integer using recursion */
/* factorial of nis calculated as n! =n * (n-1)! */

#i ncl ude <stdio. h>
l ong int factorial(int n)

if((n==0)][(n == 1))

return 1;
el se
return(n * factorial (n-1));
}
voi d mai n(voi d)
{
I nt num
printf(“Enter a nunmber : “);
scanf (“9%d”, #
i f(num >= 0)
printf(“\n Factorial (%) =%d \n", num
factorial (num);
el se
printf(“\n Invalid Input \'n”);
}

Fig 4.12: Program To calculate factorial of an integer using recursion

Patni Internal Page 39 of 154

C Programming

S5 Arrays

C language provides a capability caled ‘array’ that enables the user to design a set of smilar data
types. Very often, one needs to process collections of related data items, such as addition of fifty
numbers, test scores of students in a university, a set of measurements resulting from an
experiment, income tax tables, etc. One way of handling such a situation would be to declare a
new variable name for each of these data items. This gpproach obvioudy is quite cumbersome, if
not atogether impossible.

A better way to solve the problem is to use an array of a corresponding data type. This enables
the user to access any number of relative data type using a single name and subscript.

5.1 Definition

An ordered finite collection of data items, each of the same type, is caled an array, and the
individual dataitems are its elements.

Only one name is assigned to an array and specifying a subscript references individua elements.

A subscript is aso caled an index. In C, subscripts start at O, rather than 1, and cannot be
negative. The single group name and the subscript are associated by enclosing the subscript in
sguare brackets to the right of the name.

Consider an example where marks of some students are stored in an array named mark, then
mark[0] refers to the marks of first student, mark[1] to the marks of second student, mark[10] to
the marks of eleventh student and mark[n-1] to the marks of nth student.

An array has the following properties:

The type of an array is the data type of its elements.
The location of an array isthe location of its first element.
The length of an array is the number of data elements in the array.

YV V V V

The storage required for an array is the length of the array times the size of an
element.

Arrays, whose elements are specified by one subscript, are called one-dimensiond arrays. These
are commonly known as Vectors.

Arrays, whose elements are specified by more than one subscript, are called multi-dimensona
arrays. These are commonly known as Matrix.

— B Patni Internal Page 40 of 154

C Programming

5.2 Declaration of Single Dimensional Array (Vectors)

Arrays, like simple variables, need to be declared before use.

An array declaration is of the form:

|[storage cl ass] data-type arraynane[size] ;

where,
storage class Storage class of an array.
data-type The type of data stored in the array.
arrayname Name of the array.
Sze Maximum number of elements that the array can hold.

Hence, an array num of 50 integer elements can be declared as:
int num[50];

LJ—> Brackets delimit

arrav size

- Sizeof array

L » Nameof array

» Datatypeof array

5.3 Initialization of Single Dimensional Array

Elements of an array can be assigned initiad values by following the array definition with a list of
initializers enclosed in braces and separated by commas.

For example, The declaration:

| int mark[5] = {40, 97, 91, 88, 100}, |

declares an array mark to contain five integer elements and initiaizes the elements of array as
given below:

mark[0] 40
mark[1] 97
mark[2] 91
mark[3] 88
mark[4] 100

Patni Internal Page 41 of 154

C Programming

The declaration:

| char name[3] = {' R, A ,’J'}; |

declares an array name to contain three character elements and initializes the elements of array as
given below:

name[Q] ‘R’
name[1] ‘A
name|2] ‘J

The declaration:

| float price[7] = {0.25 15.5, 10.7, 26.8, 8.8, 2.8, 9.7}; |

declares an array price to contain seven float elements and initializes the elements of array as
given below:

price[0] 0.25
price[1] 155
price[2] 10.7
price[3] 26.8
price[4] 8.8
price[5] 2.8
price[6] 9.7

Since any constant integral expression may be used to specify the number of elementsin an array,
symbolic constants or expressions involving symbolic constants may aso appear in array
declarations.

For example, The declaration:

#defi ne UNI T_PRI CE 80

#defi ne TOT_PRI CE 100
i nt sl _price[UNI T_PRI CE] ;
int nt_price[TOT_PRI CE] ;

declare d price and nt_price to be one-dimensional integer array of 80 and 100 elements
respectively.

The array size may be omitted during declaration.

—— ~ q Patni Internal Page 42 of 154

C Programming

Thus, the declaration,

| int mark[] = {40, 97, 91, 88, 100},

is equivaent to the

| int mark[5] = {40, 97, 91, 88, 100} ; |

In such cases, the subscript is assumed to be equal to the number of elementsin the array (5in
this case).

The dements, which are not explicitly initidized, are automatically set to zero.
E.g.

int x[4]={1,2}; implies
x[0]=1
x[1]=2
x[2]=0
X[3]=0

54 Array dementsin memory

Consder the following array declaration:

| i nt nuni 100] ; |

In the above declaration, 400 bytes get immediately reserved in memory, as each of the 100
integers would be of 4 byteslong. An array is a set of contiguous memory locations, first element
starting at index zero. The dlocation will be like this.

4000 4004 4008 4012 4016 4020 4392 439%

0 1 2 3 4 5 && 98 99
=

l

num[0] num[1] num[2] num[3] num[4] num|[5] nuM[98] num[99]

As seen above, array elements are always numbered (index) from O to (n-1)
wheren isthe size of thearray.

Patni Internal Page 43 of 154

C Programming

55 Array Processng

The capability to represent a collection of related data items by a single array enables the
development of concise and efficient programs.

An individua array element can be used in a similar manner that a smple variable is used. That
isuser can assign avalue, display it's value or perform arithmetic operations onit.

To access a particular element in an array, specify the array name, followed by square braces
enclosing an integer, which iscaled the Array | ndex.

For example, The assignment statement

| nuni5] = 2 ;

assigns 2 to 6th eement of num.

| p = (net[1] + amount[9]) /2 ;

assigns the average value of 2nd element of net and 10th element of amount to p.

The statement

| --nun{ 8] ;

decrements the content of 9th element of num by 1

The assignment statements

5.

[;
nunf ++i] ;

p

assigns the value of num[6] to p.

whereas the statements
i =5 ;
p = nunii++] ;

assign the value of num[5] to p.

However, dl operations involving entire arrays must be performed on an element-by-element
bass. This is done using loops. The number of loop iterations will hence equd to the number of
array elements to be processed.

Patni Internal Page 44 of 154

C Programming

Asanillustration of the use of arrays, consider the following program.

/* Program to find aver age mar ks obtained by 25 studentsin atest by accepting marks of
each student */

#include <stdio.h>
void main(void)
{
inti;
float sum=0;
float mark[25];
for (i=0;i<25;i++)
{
printf(“ Enter marks: *“);
scanf(“ %f” ,& mark[i]);
sum += mark{[i];
}

printf(*\n Average marks: %.2f \n” ,sum/25);

Fig 5.1: Sample code using Arrays

5.6 Multidimensonal Arrays

Multidimensional Arrays are defined in much the same manner as single dimensional arrays,
except that a separate pair of square bracketsis required for each subscript (dimension).

5.6.1 Declaration of multi-dimensional arrays

Declaration of multi-dimensional arrays.
Syntax:

[storage class] data-type arraynamefexpr-1][expr-2] ... [expr-n];

Where,

storage class Storage class of an array.

data-type The type of data stored in the array.

arrayname Name of the array.

expr-1 A constant integral expression specifying the number of
dementsin the 1st dimension of the array.

expr-n A constant integral expression specifying the number of
eementsin the nth dimension of the array.

The scope of this course will limit the discussion to 2-dimensiona arrays only.

Patni Internal Page 45 of 154

C Programming

Thus a two-dimensiona array will require two pairs of square brackets. One subscript denotes the
row and the other the column. All subscriptsi.e. row and column start with 0.

So, atwo-dimensional array can be declared as

[storage class] data-type arrayname[exprl][expr2];

where,
exprl Maximum number of rows that the array can hold.
expr2 Maximum number of columns that the array can hold.

Hence, an array num of integer type holding 5 rows and 10 columns can be declared as

int num[5][10];

|—> No. of columns

No. of rows
Name of array

—— Datatype of array

5.6.2 Initialization of two-dimensional arrays

Two-dimensond arays are initidized analogoudy, with initidizers listed by rows. A pair of
braces is used to separate the list of initializers for one row from the next, and commeas are placed
after each pair of brace except for the last row that closes off arow.

E.g.

int no[3][4] = {
{1, 2, 3, 4},
{5,6,7, 8},
{9, 10, 11, 12}

declares an array no of integer type to contain 3 rows and 4 columns. The inner pairs of braces
are optiona. Thus the above declaration can equivalently be written as

int no[3]14] =112 3, 405,6,7,8,09, 10, 11, 12}, |

Above array initializes the e ements of array as given below:

no[0,0] =1 no[0, 1] =2 no[0, 2] =3 no[0, 3] =4

no[1, 0] =5 no[l, 1] =6 no[l, 2] =4 no[l1, 3] =5

no[2,0] =9 no[2, 1] =10 no[2, 2] =11 no[2, 3] =12

~ A 7 0 Patni Internal Page 46 of 154

C Programming

Note: It is important to remember that while initidizing a two-dimensiond array it is necessary to
mention the second (column) dimension, whereas the first dimension (row) is optional.

Hence the declaration,

int arr[2][3] = {12, 34, 56, 78}; valid
int arr[][3] = {12, 34, 56, 78}; valid
int arr[2]]] = {12, 34,56, 78}; invalid
int arr[][1 = {12, 34,56, 78}; invalid

5.6.3 Memory Representation of Two-dimensional Arrays

A two-dimensiona array &i][j] can be visualized as a table or amatrix of i rows and j columns as
shown below:

col 1 col 2 col 3 col j-1 col j
rowl |aojo] Ja[o[y |a[0[2] | - 1a0][j-2] ECTEEE
row2 [alo] Jaa] a2 L 1 a[1[j-2] Laaf-y |
rowi-1 | a[i-2][0] |ali-2[1] [ali-2][2] - | ai-2][j-2] a[i-2][j-1]
row i Lali-uro] [afi-ury |afi-1z] | - | ai-1[j-2] | ali-1[-1 |

All the elementsin arow are placed in contiguous memory locations.

Consider the statement

| char OS[2][4] = {“DOS’,” ABC’};

Internally in memory, it is represented as:

D O S \O’ A B C \O’

0S[0, Q]

0S[0, 1]

0S]|0, 2]

OS[0, 3]

OS[1, 0]

OS[1,1]

OS|[1, 2]

OS][4, 3]

Patni Internal

Page 47 of 154

C Programming

56.4 Two-Dimensional Array Processing

Processing of two-dimensional array is same as that of single dimensional arrays.
Asanilludtration of the use of two-dimensiond arrays, consider the following program.

/* Program to find aver age marksaobtained by a classof 25 studentsin atest by accepting
roll number and marks of each student */

#include <stdio.h>
void main(void)

{
inti;
float sum=0;
int student[25][2];
for (i=0; i<25; i++)
{
printf(“ Enter Roll noand marks: “);
scanf(* % d%d”, & student[i][0], & studentd[i][1]);
/* Roll no will get stored in studentg[i][0] and marksin students[i][1] */
sum += studentd[i][1];
}
printf(*\n Average marks: % .2f\n”, sum/25);
}

Fig 5.2: Sample code for Two dimensional Array processing

5.7 What arestrings?

A gring constant is one-dimensional array of characters terminated by a null (‘\O’) character.
Strings are used to store text information and to perform manipulations on them. Strings are
declared in the same manner as other arrays.

For Example
| char fruit[10]; |

5.7.1 Initializing Character Arrays

Character arrays can be initialized in two ways as individual characters or as a single string.

| char name[] = {‘P, ’a, 't’, 'n'", ‘i', "\0}; |

Each character in the array occupies one byte of memory and the last character is aways \O',
which is a single character. The null character acts as a string terminator. Hence a string of n
elements can hold (n-1) characters.

| char fruit[] = “Apple”; |

Patni Internal Page 48 of 154

C Programming

Note that, in this declaration ‘\O" is not necessary, C inserts the null character automatically, when
the array is initialized with a double quoted string constant.

When initidlizing a character array, the length may be omitted. The compiler automaticaly
allocates the storage depending on the length of the vaue given.

E.g.
| char nane[] = “Patni”; |

The above declaration automatically assigns storage equivalent to 6 characters including ‘\O' to
the character array name.

Memory representation of above array is shown in figure below:

Pl a| t n [\0 (_ String Terminator

[* Program to accept and print a string */
void main(void)

{
char name[20];
scanf(“%s’, name);
printf(“%s’, name);
}

The %s used in printf() is a format specification for printing out a string. The same specification
can be used with scanf() aso. In both cases we are supplying the base address to the functions.
The scanf() function , after the enter is pressed automatically insertsa‘\0’ at the end of the string.
The scanf() function is not capable of receiving multi-word strings separated by space. In that
case use the gets() and puts() functions.

/* Program that accepts and printsa string using gets and puts functions */
#include <stdio.h>
#include <string.h>
main()
{
char name[20];
gets(name);
puts(name);

— Patni Internal Page 49 of 154

C Programming

Following are some examples given using strings.

/* Program to compute the length of a given string */
#include <stdio.h>
void main(void)

{

char str[10];

int len;

printf("\n Enter string:");

scanf(" %[™\n]", arrl);

for(len = O; strlen] '="\0"; len++);

printf("*\nThe length of the string is%d\n", len);
}

5.8 Built-in String Functions

The header file string. h provides useful set of string functions. These functions help in

manipulating strings. To use these functions, the header file st ri ng. h must be included in the
program with the statement:

| # include <string.h> |

5.8.1 strcat (target, source)

The strcat() function accepts two strings as parameters and concatenates them, i.e. it appends
the source string at the end of the target.

/* Sample program using strcat() */

#include <stdio.h>

#include <string.h>

void main(void)

{
char namel[]="Ash";
char name2[]="wini";
strcat(namel, name2);
printf("\n");
puts(namel);

}

Output:

Ashwini

E——— ~ q Patni Internal Page 50 of 154

C Programming

5.8.2 strcmp (stringl, string?)

The function strcmp() is used to compare two strings. This function is useful while writing
program for ordering or searching strings.

The function accepts two strings as parameters and returns an integer value, depending upon the

relative order of the two strings.

Return value Description

Lessthan O If stringl is less than string2
Equa to 0 If stringl and string2 are identical
Greater than O If stringl is greater than string2

Table 5.1: strcmp() function return values

[* Sample program to test equality of two strings using strcmp() */
#include <stdio.h>
#include <string.h>
void main(void)

{
char str1[10];
char str2[10];
int result;
printf("\n*** Comparing two strings ***\n");
fflush(stdin); /* flush the input buffer */
printf(" Enter first string\n");
scanf(" %s", strl);
fflush(stdin);
printf("\nEnter second string\n");
scanf(" %s", str2);
result = stremp(str1, str2);
if(result <0)
printf("\nString2 is greater than Stringl ..."
elseif(result == 0)
printf("\nBoth the Strings are equal..");
else
printf("\nStringl is greater than String2 ..."
}

The function strcmp() compares the two strings, character by character, to decide the greater one.
Whenever two characters in the string differ, the string that has the character with a higher ASCI|
value is greater.

Patni Internal

Page 51 of 154

C Programming

E.g. consider the strings hello and Hello!
The first character itsdlf differs. The ASCII code for h is 104, while that for H is 72. Since the

ASCII code of h is greater, the string hello is greater than Hello!. Once a difference is found,
there is no need to compare the other characters of the strings; hence, function returns the result.

5.8.3 strcpy(target, source)

The strcpy() function copies one string to another. This function accepts two strings as
parameters and copies the source string character by character into the target string, up to and
including the null character of the source string.

[* Sample program using strcpy() function */
#include <stdio.h>
#include <string.h>
void main(void)
{
char namel[]="Ash";
char name2[]="win";
printf("\n** Before Copying two stringsare **\v");
printf(" %s\t%s"', namel, name2);
strcpy(namel, name2);
printf("\n** After Copying two stringsare **\v");
printf(" % s\t%s\n" , namel, name2);
}
Output
** Before Copying two stringsare **
Ash win
** After Copyingtwo stringsare**
win win

5.8.4 strlen(strinqg)

The strlen() function returns an integer value, which corresponds, to the length of the
string passed. The length of a string is the number of characters present in it, excluding the
terminating null character.

/* Sample Program using strlen() function() */
#include <stdio.h>
#include <string.h>
void main(void)
{

char arr1[10];

inti, len;

printf("\nEnter string :\n");

scanf(" %["\n]", arr 1);

printf("\nThe length of the stringis%d", strlen(arrl));
}

—— ~ q Patni Internal Page 52 of 154

C Programming

59 TwoDimensional Arraysof Characters

main()
{
char namelist[3][10] ={

“akshay”,
“parag”,
“raman”
h

}

Instead of initializing the names, had these names been supplied from the keyboard, the program
segment would have looked like this...

for (i =0; 1 < 3; i++)
scanf (“%”, nanelist[i]);

The memory representation of the above array is given below

1001 | a k S h a y \0

1011 | p a r a g \0
1021 |r a m a n \O

Even though 10 bytes are reserved for storing the name ‘akshay’, it occupies only 7 bytes. Thus 3
bytes go waste.

5.10 Standard Library String Functions

Function Description

strlen Finds the length of a string

striwr Converts a string to lowercase

strupr Converts a string to uppercase

strcat Appends one string at the end of another

strncat Append first n character of a string at the end of another
strcpy Copies a string into another

strncpy Copiesfirst n character of one string into another
stremp Compares two strings

strncmp compares first n characters of two strings

Table 5.2: String built-in functions.

— B Patni Internal Page 53 of 154

C Programming

6 Pointers

The dgnificance of pointers in C is the flexibility it offers in the programming. Pointers enable
us to achieve parameter passing by reference, dea concisdy and effectively either arrays,
represent complex data structures, and work with dynamically alocated memory.

Although, alot of programming can be done without the use of pointers, their usage enhances the
capability of the language to manipulate data. Pointers are also used for accessing array elements,
passing arrays and strings to functions, creating data structures such as linked lists, trees, graphs,
and so on.

6.1 What isapointer variable?

Memory can be visualized as an ordered sequence of consecutively numbered storage locations.
A data item is stored in memory in one or more adjacent gorage locations depending upon its
type. The address of a data item is the address of its first storage location. This address can be
stored in another data item and manipulated in a program. The address of a data item is called a
pointer to the data item and a variable that holds an address is called a pointer variable.

Uses of Pointers

1. Keep track of address of memory locations.

2. By changing the address in pointer type variable you can manipulate data in different
memory locations.

3. Allocation of memory can be done dynamically.

6.2 Addressand Dereferencing (& and *) Operators

Consider the declaration

int num= 5; |

The compiler will automatically assign memory for this data item. The data item can be accessed
if we know the location (i.e., the address) of the first memory cell.

num ————— Location name

S ——p Vadueat location

Location number or
4264 - > Address

The address of num’s memory location can be determined by the expresson & num, where & is
unary operator, called the ‘address of’ operator. It evaluates the address of its operand.

™ A 7 1 Patni Internal Page 54 of 154

Pt C: Entl

C Programming

We can assign the address of num to another variable, pnum as:

| pnum = &numn

This new variable pnum iscaled a pointer to num, since it points to the location where numis
stored in memory. Thus pnumis referred to as a pointer variable.

The data item represented by num, can be accessed by the expression * pnum, where * isunary
operator, caled ‘the value at the address’ operator. It operates only on a pointer variable.

It can beillustrated as bel ow:

pnum num

Address of num > V alue of num

Relationship between pnum and num (where pnum = & numand num = * pnum).

Therefore, * pnum and num both represent the same data item.

Accessing a data item through a pointer is caled Der ef er enci ng, and the operator asterisk
(*)iscadledthe‘der ef erenci ng or indirection operator’.

6.3 Pointer type Declaration

Pointers are also variables and hence, must be defined in a program like any other variable. The
rules for declaring pointer variable names are the same as ordinary variables.

The declaration of a pointer is of the following form

| type *vari bal e_nane;

where,
type Data type of the variable pointed by the pointer variable.
variable_name Name of the pointer varigble
* (asterisk) Signifies to the compiler that this variable has to be considered a
pointer to the data type indicated by type.
For example,
int *int_ptr int_ptr isapointer to data of type integer
char *ch_ptr ch_ptr isapointer to data of type character
double *db_ptr db_ptr isapointer to data of type double

Note: All the pointer variables will occupy 4 bytes of memory regardless of
the type they point to.

Patni Internal Page 55 of 154

C Programming

6.4 Pointer Assgnment

The address of (&) operator, when used as a prefix to the variable name, gives the address of that
variable.

Thus,

| ptr = & ;

assigns address of variablei to ptr.

[* Exampleof ‘&’ - address of operator */
#include <stdio.h>
void main(void)

{
int a=100;
int b=200;
int c=300;
printf(* Address:%u containsvalue :%d\n”, & a, a);
printf(“ Address.%u contains value :%d\n”, &b, b);
printf(* Address:%u contains value :%d\n”, &c, c);
}
Output:

Address; 65524 contains value : 100
Address; 65520 contains value : 200
Address; 65516 contains value :300

Fig. 6.1: Sample Code for ‘&’ operator

A pointer value may be assigned to another pointer of the same type.

For example, in the program below

int i=1, j, *ip;
i p=&i ;
j=*ip;
*i p=0;

The first assgnment assigns the address of variablei to ip.

The second assigns the value at address ip, that is, 1 to j, and findly to the third assgns 0 to i
since *ip isthe same asi.

— —~ 7 Patni Internal Page 56 of 154

C Programming

The two statements

i p=&i ;
j=rip;

are equivaent to the single assgnment

j="(&i);

or to the assignment

j=i;

i.e., the address of operator & isthe inverse of the dereferencing operator *.

Congder the following segment of code

#include <stdio.h>
void main(void)

{
char *ch;
char b ="A’;
ch =&b; [* assign address of b to ch */
printf(*%¢c”, *ch);
}
Output: A

36624 (Thisis &b)

b A

4020

ch 36624

Fig. 6.2 Memory representation of pointer
In the above example,

b vaue of b, whichis*'A’

&b address of b, i.e., 36624

ch vaue of ch, which is 36624

&ch address of ch, i.e., 4020 (arbitrary)

*ch contents of ch, => value at 36624, i.e., A
Thisis same as *(&b)

— B Patni Internal Page 57 of 154

C Programming

6.5 Pointer Initialization

The declaration of a pointer variable may be accompanied by an initidizer. The form of an
initidization of a pointer variableis

type *identifier=initializer;

The initidlizer must either evauate to an address of previoudy defined data of appropriate type or
it can be NULL pointer.

For example, the declaration

float *fp=null;

The declarations

short s;
short *sp;
Sp=&s;

initidize sp to the address of s.

The declarations

char c[10];
char *cp=&c[4];

initidize cp to the address of the fifth element of the array c.

char *cfp=&c[0];

initidize cfp to the address of the first element of the array c. It can aso be written as

char *cfp=c;

Address of first element of an array is also called as base address of array.

Following program illustrates declaration, initidization, assgnment and dereferencing of
pointers.

/* Example : Usage of Pointers*/
#include <stdio.h>
void main(void)

{
inti,j=1,
int *jpl, *jp2=&j; [* jp2 pointstoj */
ipl=jpz /* jpl also pointstoj */
i =*jpl; [* i getsthe valueof j */
*ip2="*jpl+i; [*iisaddedtoj */
printf(“i=%d j=%d *jp1=%d *jp2=%d\n”, i, J, *]pl, *|p2);
}
Output:

i=1j=2*jpl=2*jp2=2

Patni Internal

Page 58 of 154

C Programming

6.6 Pointer Arithmetic

Arithmetic can be performed on pointers. However, in pointer arithmetic, a pointer is a vaid

operand only for the addition(+) and subtraction(-) operators.

An integral value n may be added to or subtracted from a pointer ptr. Assuming that the data item
that ptr points to lies within an array of such data items. The result is a pointer to the data item

that lays n data items after or before the one p points to respectively.

The vaue of ptrtn is the storage location ptr+n*sizeof(*ptr), where sizeof is an operator that
yields the size in bytes of its operand.

Congder following example

[* Example of Pointer arithmetic */
#include <stdio.h>
void main(void)

{
int i=3, *x;
float j=1.5, *y;
char k="C’, *z;
printf(“ Value of i=%d\n”, i);
printf(* Value of j=%1f\n", j);
printf(“Value of k=%c\n”, k);
X=&i;
y=&j;
z=&Kk;
printf(“Original Valuein x=%u\n", x);
printf(“ Original Valuein y=%u\n”, y);
printf(“Original Valuein z=%u\n”, 2);
X++;
y++
Z++;
printf(“New Value in x=%u\n”, x);
printf(“* New Valuein y=%u\n”, y);
printf(* New Valuein z=%u\n”, z);

}

Output:
Value of i=3
Value of j=1.500000
Value of k=C

Original Value in x=1002
Original Value in y=2004
Original Valuein z=5006

Patni Internal

Page 59 of 154

C Programming

New Valuein x=1006
New Valuein y=2008
New Value in z=5007

In the above example, New vaue in x is 1002(origina value)+4, New vaue in y is 2004(original
vaue)+4, New vauein z is 5006(origina vaue)+1.

This happens because every time a pointer is incremented it points to the immediately next
location of its type. That is why, when the integer pointer X is incremented, it points to an address
four locations after the current location, since an int is dways 4 bytes long. Smilarly, y points to
an address 4 locations after the current locations and z points 1 location after the current location.

Some valid pointer arithmetics are
e Addition of anumber to a pointer.

e Subtraction of a number from a pointer.
For example, if pl and p2 are properly declared pointers, then the following statements are valid.

y=*pl**p2; /*same as (*pl)* (*p2) */
sum=sum+*p1l;

z=5*-*p2/*p1; /* same as (5*(-(*p2)))/(*pl) */
*p2=*p1+10;

C dlows subtracting one pointer from another. The resulting value indicates the number of bytes
separating the corresponding array elements. Thisisillustrated in the following example:

#include <stdio.h>
void main(void)

{
static int ar[]={10, 20, 30, 40, 50};
int *i, *j;
i=&ar[1]; /* assign address of second element toi */
j=&ar[3]; [/* assign address of fourth element toj */
printf(“%d %d”, j-i, *j-*i);
}
Output:
2 20
[
o 10 2000
20 2004
_ 30 2008
: 40 2012
2012 50 2016

Fig 6.3: Memory Representation of Pointer Arithmetic

Patni Internal Page 60 of 154

C Programming

The result of expression (j-i) is not 8 as expected (2012-2004) but 2.

This is because when a pointer is decremented (or incremented) it is done so by the length of the
data type it points to, called the scale factor

(j-i) = (2012-2004) /4 = 2

asgzeof intis4.

Thisiscdled reference by address.

Some invalid pointer arithmetics are
Addition two pointers.

Multiplication of a number with a pointer.

Division of a pointer with a number.

6.7 Pointer Comparison

The relational comparisons ==, != are permitted between pointers of the same type.

The relational comparisons <, <=, >, >= are permitted between pointers of the same type and the
result depends on the relative location of the two data items pointed to.

For example,

int a[10], *ap;

the expression

| ap==&a[9];

istrueif ap is pointing to the last element of the array a, and the expression

| ap<&a[10];

istrue aslong as ap is pointing to one of the eements of a.

6.8 Pointersand Functions

A function can take a pointer to any data type, as argument and can return a pointer to any data
type.

For example, the function definition

double *maxp(double *xp, double *yp)
{

return *xp >=*yp ? x;

}

Patni Internal Page 61 of 154

C Programming

specifies that the function maxp() return a pointer to a double variable, and expects two
arguments, both of which are pointers to double variables. The function de-references the two
argument pointers to get the values of the corresponding variables, and returns the pointer to the
variable that has the larger of the two values. Thus giventhat,

double u=1, v=2, *mp;

the statement

mp = maxp(&u, &V);

makes mp point to v.

6.8.1 Call by Value

In acal by vaue, vaues of the arguments are used to initialize parameters of the called function,
but the addresses of the arguments are not provided to the called function. Therefore, any change
in the vaue of a parameter in the caled function is not reflected in the variable supplied as
argument in the calling function.

/* Example: Function parameters passed by Value */
#include <stdio.h>
void main(void)

{
int a=5, b=7;
void swap(int, int);
printf(“ Before function call: a=%d b=%d", a, b);
swap(a, b); /* Variablesa and b are passed by value */
printf(“ After function call: a=%d b=%4d", a, b);
}
void swap(int x, int y)
{
int temp;
temp=x;
X=Y;
y=temp;
}
Output :
Before function call: a=5 b=7
After function call: a=5 b=7

—— ~ q Patni Internal Page 62 of 154

C Programming

6.8.2 Call by Reference

In contrast, in a cal by reference, addresses of the variables are supplied to the called function
and changes to the parameter values in the called function cause changes in the values of the
variable in the calling function.

Cdll by reference can be implemented by passing pointers to the variables as arguments to the
function. These pointers can then be used by the called function to access the argument variables
and change them.

[* Example : Arguments as pointers*/
#include <stdio.h>
void main(void)

{
int a=5, b=7;
void swap(int*, int*);
printf(“ Before function call: a=%d b=%d", a, b);
swap(&a, &b); /* Address of variablea and b is passed */
printf(“ After function call: a=%d b=%4d", a, b);
}
void swap(int *x, int *y)
{
int temp;
/* The contents of memory location are changed */
temp=*x;
*X=NY;
*y=temp;
}
Output :

Before function call: a=5 b=7
After function call: a=7 b=5

Steps involved for using pointers in afunction are

1. Pass address of the variable (Using the ampersand (&) or direct pointer variables).
2. Declare the variable as pointers within the routine.

3. Refer to the values contained in a memory location via asterisk (*).

— —~ 7 Patni Internal Page 63 of 154

C Programming

Using cdl by reference, we can make a function return more than one value at atime, as shown
in the program below:

/* Returning more than one values from a function through arguments */

include <stdio. h>
voi d nai n(voi d)

{
fl oat radius;
fl oat area, peri;
voi d areaperi(float, float*, float*);
printf("Enter radius : ");
scanf ("% ", &radius);
areaperi (radi us, &area, &peri);
printf("\nArea = % 2f \n", area);
printf("Perinmeter = %2f", peri);
}
void areaperi(float r, float *a, float *p)
{
*a =314 *r * r,
*p =2 * 3.14 * r,
}
Output :
Enter radiusof acircle: 5
Area=78.50

Perimeter=31.40

6.9 Pointersto Functions

Functions have addresses just like data items. A pointer to a function can be defined as the
address of the code executed when the function is called. A function’s address is the starting
address of the machine language code of the function stored in the memory.

Pointers to functions are used in
e writing memory resident programs

e writing viruses, or vaccines to remove the viruses.

Address of a Function

The address of a function can be dbtained by only specifying the name of the function without the
trailing parentheses.

For example, if CalcArea() is a function aready defined, then CalcArea is the address of the
function CalcArea().

— —~ 7 Patni Internal Page 64 of 154

C Programming

Declaration of a Pointer to a Function

The declaration of a pointer to a function requires the function’s return type and the function's
argument list to be specified aong with the pointer variable.

The genera syntax for declaring a pointer to a function is as follows:

return-type (*pointer variable)(function’s argument list);

Thus, the declaration

int (*fp)(int i, int j);

declares fp to be a variable of type “pointer to a function that takes two integer arguments and
return an integer asitsvalue.” Theidentifiersi and j are written for descriptive purposes only.

The preceding declaration can, therefore also be written as
int (*fp)(int, int);

Thus, declarations

int i(void); declaresi to be a function with no parameters that return an int.

int* pi(void); declares pi to be afunction with no parameters that returns a
pointer to anint.

int (*ip)(void); declares ip to be apointer to afunction that returns an integer value
and takes no arguments.

/* Exanple: Pointer to Function */

#i ncl ude <stdi o. h>
int funcl(int i)

{
return(i);

}

float func2(float f)

{
return(f);

}

voi d mai n(voi d)

{
int (*p)(int); /* declaring pointer to function */
float (*q)(float);
int i=5;
float f = 1.5;
p=funcl; /* assigning address of function funcl to p */
g=func2; /* assigning address of function func2 to q */
printf("i =% f=9%\n", p(i), q(f));

}

. B Patni Internal Page 65 of 154

C Programming

After declaring the function prototypes and two pointers p and g to the functions; p is assigned
the address of function funcl and g is assigned the address of function func2.

Invoking a Function by using Pointers

In the pointer declaration to functions, the pointer variable along with the operator (*) plays the
role of the function name. Hence, while invoking function by using pointers, the function name
is replaced by the pointer variable.

[* Example: Invoking function using pointers*/

include <stdio. h>
voi d mai n(voi d)

{ pointer to function
unsigned int fact(int); / with prototype of fact()
unsigned int ft, (*ptr)(int)4
int n;

ptr=fact; /* assigning address of fact() to ptr */
printf("Enter integer whose factorial is to be found:");
scanf ("%", &n);

ft=ptr(n); /* call to function fact using pointer ptr */
printf("Factorial of %l is % \n", n, ft);

}
unsigned int fact(int m
{
unsigned int i, ans;
if (m==0)
return(l);
el se
{ for(i=m ans=1l; i>1; ans *=i--);
return(ans);
}
}
Output:
Enter integer whose factorial isto be found: 8
Factorial of 8is40320
— & ~ g Patni Internal Page 66 of 154

C Programming

6.9.1 Functions returning Pointers

We have dready learnt that a function can return an int, a double or any other datatype. Similarly
it can return a pointer. However, to make a function return a pointer it has to be explicitly
mentioned in the calling function as well asin the function declaration.

While retaining pointers, return the pointer to globa variables o static or dynamically dlocated
address. Do not return any addresses of local variables because stop to exit after the function call.

include <stdio. h>
voi d mai n(voi d)

int* check(int *p, int *q)
{
if(*p >= *q)
return(p);
el se
return(q);

[* Example: Function returning pointers*/
/* Programto accept two nunbers and find greater nunber */

{
int a, b, *c;
int* check(int, int);
printf(“Enter two nunbers :
scanf (“%%”, &a, &b);
c=check(&a, &b);
printf("\n Geater nunbers :
}

check function takes twc
integers as arguments and

returns a pointer to an integer

- The address of integers being passed to check() are

collected in p and (.

- Then in the next statenent
test the value of *p and

*q and

the conditional operators
return either the

address stored in p or the address stored in q.

- This address gets collected in c in main().

6.10 Pointersand Arrays

In C, there is a close correspondence between arrays and pointers that results not only in
notational convenience but also in code that uses less memory and runs faster. Any operation that

can be achieved by array subscripting can aso be done with pointers.

— Patni Internal

Page 67 of 154

C Programming

6.10.1 Pointer to Array

Arrays are internally stored as pointers. A pointer can efficiently access the elements of an array.

/* Program to access array elements using pointers */
#include <stdio.h>
void main(void)
{
static int ar[5]={10, 20, 30, 40, 50};
int i, *ptr;
ptr = &ar[0]; /* sameas ptr = ar */
for (i=0; i<5; i++)

{
printf(* %d-%d\n”, ptr, *ptr); J increments the pointer to
pr++; —— point to the next element and
} not to the next memory
} location
Output:
5000-10
5004-20
5008-30
5012-40
5016-50

An integer pointer, ptr is explicitly declared and assigned the gstarting address. The memory
representation of above declared array ar (assuming an integer takes 4 bytes of storage) is shown
below:

5000 5004 5008 5012 5016
Ar 10 20 30 40 50
ar[Q] Ar[1] ar[2] ar[3] ar[4]

Recall that an array name is really a pointer to the first element in that array. Therefore, address
of the first array element can be expressed as either & ar[0] or smply ar.
i.e. ar=&ar[0]=5000
Hence,
ar=(&ar[0])
i.e. *ar=ar[0] or *(ar+0)=ar[0]
To make the above statement mor e general, we can write
*(ar+i)=ar[i];
Where, i=0,1,2,3,...

— Patni Internal Page 68 of 154

C Programming

Hence any array element can be accessed using pointer notation, and vice versa.

It will be clear from following table:

char c[10Q], int i;

Array Notation Pointer Notation
& c[0] c

cfi] *(cHi)

& cfi] CHi

For example, given that

char c[5] = {‘a,’b’,’c,’d", '€} ;

char *cp ;
and
| cp=¢;
cp: cp+0 cptl cpt2 cp+3 cpt4
: } }) |
C: ‘a ‘b’ ‘c ‘o’ ‘e
c0] c1] c[2] c(3] cl4]
cp[0] cp[1] cp[2] cp[3] cp[4]
and
c[0] ‘a *cp cp[O]
c[1] ‘b’ *(cp+1) cp[1]
c[2] ‘c *(cp+2) cp[2]
c[3] d’ *(cp+3) cp[3]
c4] e *(cp+4) cpl4]

Using this concept, we can write the above program as shown below.

i nclude <stdio. h>
voi d mai n(voi d)

{
static int ar[5]={10, 20, 30, 40, 50};
int i;
for(i=0; i<5; i++)
printf(“%-%\n", (ar+i), *(ar+i));
}

Note: C does not allow to assign an addressto an array.

Patni Internal

Page 69 of 154

C Programming

For example,

ar=& a isinvdid.

The main difference between an array and a pointer s that an array name is a constant, (a
constant pointer to be more specific), whereas a pointer is a variable.

6.10.2 Arrays as Function Arguments

An array name can be passed as an argument to afunction. A formal parameter declared to be of
type “array of T” istreated asif it were declared to be of type “pointer to T”.

Thus, the declaration,

void fun_arr(double x[], int length);

can equivaently be written as

void fun_arr(double *x, int length);

When an array is passed as an argument to a function, we actually pass a pointer to the zeroth
element of the array i.e. g0]. Since arrays are stored in contiguous memory locations, we can
perform indexing on the starting location of the array.

Following is an example of a function that finds the value of the largest element in an integer
array.

[* Function to return the largest number of an array */
int max(int *a, int length)

{ int i, maxv;
for(i=1, maxv=*g; i<length; i++)
{
if(* (a+i)>maxv)
maxv = *(a+i);
}
return maxv;
}
. F Patni Internal Page 70 of 154

C Programming

/* Program to display array elements by passing array to a function */
#include <stdio.h>
void main(void)

{
static int num[5]={25,60,74,50,39};
void display(int*, int);
display(num, 5); [* base address of array is passed */
}
void display(int *j, int n)
{
inti=1;
printf(“Array elementsare:\v”);
while(i<=n)
{
printf(“%d\t”, *j);
i++;
j++; [*increment pointer to point to the next location */
}
}
Output:

Array elementsare:
25 60 74 50 39

6.10.3 Pointers and character arrays

All gring manipulators use pointers. When a string is created, it is stored contiguously and a
NULL (* \ 0') character is automatically appended to it at the end. This Null signifies the end of
the string.

A character-type pointer variable can be assigned to an entire string as a part of the variable
declaration. Thus, a string can conveniently be represented by either a one-dimensiona character
array or by a character pointer.

Shown below is smple C program in which two strings are represented as one-dimensiona

character arrays.

#include <stdio.h>
char x[]="Thisstring isdeclared externally \n\n”;
void main(void)

{
char y[]="This string is declared within main”;
printf(* %s’, x);
printf(*%s’, y);

}

Patni Internal Page 71 of 154

C Programming

Thefirst string is assigned to the external array x[].
The second string is assigned to the array y[].

[* Hereisadifferent version of the same program. The strings are now assigned to
pointer variablesrather than to conventional one-dimensional arrays. */

#include <stdio.h>
char *x =*“Thisstring isdeclared externally\n”;
void main(void)

{
char *y =“Thisstring is declared within main”;
printf(“%s’, x);
printf(“%s’,y);

}

Output :

Thisstring is declared externally
Thisstring is declared within main

The external pointer variable x points to the beginning of the first string, whereas the pointer
variable y, declared within main, points to the beginning of the second string.

6.10.4 Pointers and multidimensional arrays

A two-dimensiond array is actudly a one-dimensional array, whose elements are themselves
arrays.

A two-dimensiona array declaration can be written as

data-type array[expression 1] [expression 2]; |

In this declaration, data-type refers to the data type of the array, array isthe corresponding array
name, and expressionl and expression?2 are positive integer expressions. Thefirst subscript refers
to rows and the second subscript refers to columns.

For example, the declaration

int matrix[3][5];

specifies that the array matrix consists of three elements, each of which is an array of five integer
elements, and that the name matrix is a pointer to the first row of the matrix.

—— ~ q Patni Internal Page 72 of 154

C Programming

meatrix N
1% one-dimensiond array
(matrix+l) —p
2" one-dimensiond array
(metrix+2) —p
3 one-dimensiond array
A 2-aimensiona array In memory

Since a one-dimensiona array can be represented in terms of a pointer (the array name), it is
reasonable to expect that a multidimensional array can aso be represented with an equivaent
pointer notation.

For example, the element matrix[i][j] can be referenced using the pointer expression

| *(*(matrix+i)+) |
since
matrix - Pointer to the first row
matrix+i - Pointer to the i'" row.
*(matrix+i) - Pointer to the first elenent of the i'"row.
*(matrix+i)+j - Pointer to the j'" elenment of the i'" row
((matrix+i)+j) - matrix[i][j]; the j'" element of the i row

The same can be represented in the following figure.

For example, the lement in third row and in fifth column can be expressed by

1% one-dimensiona array

Marix — g

2ndone-dimensiona array

(marix+l) —p

3% one-dimengional arrav

(matrix+2) ——p» -

((matrix+2)+4)))

*(matrix+2) *(matrix+2)+4)

Fig 6.4: Accessing elements of a table using indirection operator *

— Patni Internal Page 73 of 154

C Programming

Assume the array matrix[3][5] is populated with the vaues below:

Matrix 0 1 2 3 4

0 10 20 12 15 22
1 24 14 25 66 45
2 20 28 13 11 23

Fig 6.5: Matrix populated with values

The following code is written to illustrate how a multi-dimensional array can be processed using
pointers by writing a function column_total that calculates the sum of elementsin a given column
of the above matrix declaration.

Since pointer arithmetic works with pointers for any data type, a two-dimensiona array can be
traversed by initidizing the pointer to the first row of the array and then incrementing the pointer
to get the next row.

Let rowptr be the pointer to the rows of matrix. Now, the pointer rowptr is declared and
initialized to the first row of the matrix as

int (*rowptr)[5] = matri x;

The above declaration specifies that rowptr is a pointer to an array of 5 integers.

Note that the parentheses around rowptr are necessary because the dereferencing operator * has
low precedence than the indexing operator [].

Having declared rowptr to be a pointer to arow of matrix,

(*rowptr)[j]

refersto (j+1)th element of this row.

The function column_totd is as follows:

int colum_total (int (*matrix)[5],int rows,int col)
{
int (*rowptr)[5]=matri x;
int i, sum
for(i=0,sunme0;i<rows;i++)
{
sum += (*rowptr)[col];
rowpt r ++;
}
return sum
}
™ A 7 1 Patni Internal Page 74 of 154

C Programming

Not e that the paraneter declaration
int (*matrix)[5]

specifies that matrix is a pointer to an array of 5 integer
el ements. This declaration is equivalent to

| int matrix[][5] |
The function call
| colum_total (matrix, 3, 2) |

produces 50 as the sum of third column for the above given matrix (Refer Fig. 6.x)

Now, the function row_totd is written to find the sum of the particular row for the above given
matrix. As discussed earlier,

| *(rmat rix+i) |

is the pointer to the first element of the row i of matrix. Thus, if colptr points to elements of
matrix in row i, it can be initidized to point to the first dement of row i by the following
declaration.

[int (*colptr) = *(matrix+i); |

The function row_total is as follows:

int rowtotal (int (*matrix)[5],int colums, int row)

int (*colptr)=(matrix+row);

int j, sum

for(j=0,sunr0;j <col ums; | ++)
sum += *col ptr++;

return sum

}

With the same above given matrix (Fig 6.x), the function cal

| row total (matrix,5, 2)

produces 95 as the sum of the third row.

_— I Patni Internal Page 75 of 154

C Programming

6.10.5 Arrays of Pointers

As we have aready seen, an array is an ordered collection of data items, each of the same type,
and type of an array is the type of its data items. When the data items are of pointer type, is it
known as a pointer array or an array of pointers.

Since a pointer variable aways contains an address, an array of pointers is collection of
addresses. The addresses present in the array of pointers can be address of isolated variables or
addresses of array elements or any other addresses.

For example, the declaration

char *day[7];

defines day to be an array consisting of seven character pointers.

The elements of a pointer array, can be assigned values by following the array definition with a
list of comma-separated initializers enclosed in braces.

For example, in the declaration

char *dayq[7] ={"“ Sunday”, “Monday”, “ Tuesday”, “Wednesday” , “ Thursday”, “ Friday”,
“Saturday” }

The necessary storage is dlocated for the individua strings, and pointers to them are stored in
array elements.

[* Example: Array of Pointers*/
#include <stdio.h>
void main(void)

{
intm=25n=50,x=60,y =74
inti,ar[4] ={&m, &n, &x, &y}
for (i=0; i<4; i++)
printf(* % d\t”, *(ar+i));
}

ar contains addresses of isolated integer variables m n, x and y. The for loop in the program
picks up the addresses present in ar and prints the values present at these addresses.

Memory representation is shown below:

int variables m n X y
values stored in 25 50 60 74
variables
addresses of 4002 5013 3056 9860
_ variables
> A 7 1 Patni Internal Page 76 of 154

Pt C: Entl

C Programming

array of pointers ar[Q] ar[1] a2 a3

Elements of an

: 4002 5013 3056 9860
array of pointers

An array of pointers can contain addresses of other arrays.

Multidimensional Array as Array of Pointers

A nmultidimensional array can be expressed in terms of an array of pointers rather than as a
pointer to a group of contiguous arrays.

In general terms, a two-dimensiona array can be defined as a one-dimensiond array of pointers
by writing —

datatype *array[expression 1];

rather than the conventional array definition

data-type array[expression 1][expression 2];

Notice that the array name and its preceding asterisk are not enclosed in parentheses in this type
of declaration. Thus, a right-to-left rule first associates the pairs of square brackets with array,
defining the named data item as an array. the preceding asterisk then establishes that the array
will contain pointers.

Moreover, note that the last (the rightmost) expression is omitted when defining an array of
pointers, wheress the first (the leftmost) expression is omitted when defining a pointer to a group
of arrays.

Example:

Suppose that x is a two-dimensiona char array having 10 rows and 20 columns. We can define x
as aone-dimensiond array of pointers by writing -

char *x[10];

Hence, x[0] points to the beginning of the first row, x[1] points to the beginning of the second
row, and so on. Note that the number of elements within each row is not explicitly specified.

Inindividual array element, such as x [2] [5], can be accessed by writing

*(x[2]+5);

In this expression, x[2] is a pointer to the first eement in row 3, so that (x[2]+5) points to index 5
(actualy, the sixth element) within row 3. The data item of this pointer, *(x[2]+5), therefore
refersto x[2][5]. These relationships areillustrated in figure 6.4.

Patni Internal Page 77 of 154

C Programming

1% one-dimensional array

. (
X[0] 2ndone-dimensiond array

., (
x(1] 3rd one-dimensional array

—> A (
X[2]

*(x[2]+5) (X[2]+5)

. (

X[9]

10™ one-dimensiona array

Fig 6.6: Memory representation of pointer expression *(x[2]+5)

Here x isan array of 10 pointers (x[0] to x[9]). Memory from the heap has to be alocated for
each pointer so that valid data can be stored init. Now x[0] to x[9] can be treated as normal
character pointers.

For example, the statement

I puts (x[i]) ;

will print the string to which x][i] pointsto.

6.11 Pointersto Pointers

A pointer provides the address of the data item pointed to by it. The data item pointed to by a
pointer can be an address of another data item. Thus , a given pointer can be a pointer to a
pointer to a dataitem. Accessing this data item from the given pointer then requires two levels of
indirection. First, the given pointer is dereferenced to get the pointer to the given data item, and
then this later pointer is dereferenced to get to the data item.

The genera format for declaring a pointer to pointer is

datatype **ptr_to _ptr;

The declaration implies that the variable ptr_to_ptr isapointer to a pointer pointing to a data item
of the type data_type.

— B Patni Internal Page 78 of 154

C Programming

For example, the declarations

int i=10;
int *p;

declarei as an integer and p, a pointer to an integer.

We can assign the address as follows

p=&i; [* p pointstoi */
g=&p; [* g pointstop */

The relationship between i, p and q is pictoridly depicted below

q P [
5678 5032 2024

Thisimply that q is the pointer to p, which in turn points to the integer i. We can indicate this by
writing

| **q;

which means “ apply the dereferencing operator to q twice”.

The variable q is declared as :

int **q;

To get the value of i, starting from g, we go through two levels of indirection. The value of *qis
the content of p which is the address of i, and the value of **q is *(&i) whichis 1. It can be
written in different ways as

gy =i =1
“(p) =i =1
“(-@p) =i=1
(@) =iz

Thus, the each of the expressions

i+1;
**q+1;

has the value 2.

Thereis no limit on the number of levels of indirection, and a declaration such as

int *xx

Patni Internal Page 79 of 154

C Programming

Thus,
***p isan integer.
**p isa pointer to an integer.
*p isa pointer to a pointer to an integer.
p isa pointer to a pointer to a pointer to an integer.

/* Program to demonstrate the use of pointer to pointer */
#include <stdio.h>

main()

{
inti=3, *j, **k;
j =&i;
k=&j;

printf(" Thevalue of i = %d\n", i);
printf(" Thevalueof j = %u\n", j);
printf(" Thevalue of k = % u\n", k);

printf(*\nAddressof i : \n");

printf("Usingi (&i) = %u \tUsingj (j) = %u \tUsing k (*k) =%u \n", &i, j, *k);
printf(" Valueof i : \n");

printf("*Usingi (i) = %d \tUsingj (*j) = %d \tUsing k (**k) =%d \n", i, *j, **k);

printf(*\nAddressof j : \n");

printf(" Usingj (&) = %u \tUsing k (k) =%u \n", &j, k);
printf(" Valueof j : \n");

printf(" Usingj (j) = %u \tUsing k (*k) =%u \n", j, *k);

printf("\nAddress of k : \n");
printf("Usingk (&Kk) =%u \n", &Kk);
}

Pointers to pointers offer flexibility in handling arrays, passing pointer variables to functions, etc.

—— ~ q Patni Internal Page 80 of 154

C Programming

[* Example :Pointersto Pointers*/
#include <stdio.h>
void main(void)

{
int data;
int *iptr; [* pointer to an integer data */
int **ptriptr; [* pointer to int pointer */
iptr = &data; [* iptr pointsto data */
ptriptr = &iptr; [* ptriptr pointstoiptr */
iptr = 100; / same as data=100 */
printf(* Variable data :%d \n”, data);
**ptriptr = 200; /* same as data=200 */
printf(“ variable data :%d \n”, data);
data = 300;
printf(“ ptriptr ispointing to :%d \n", **ptriptr);
}
Output :

Variable data :100
Variable data :200
ptriptr is pointing to :300

Following program illustrates use of pointer to pointers.

The program alows the user to enter number of rows and columns of a double-dimensiond array
a runtime with malloc() function. It then asks the user to enter numbers to store in different

subscripts.

{

#include <stdio.h>
#include <malloc.h>
void main(void)

intj, i, row, col, **ptr;

printf(“Enter Number of Rows: “);
scanf(“%d”, & row);

ptr=(int **)malloc(sizeof(int *) * row);
printf(* Enter Number of Columns: “);
scanf(“%d”, &col);

for (i=0; i<=col; i++)

{ /
ptr[i]=(int *)malloc(sizeof(int)* col);

}

memory alocation for
rows

memory allocation for
columns

Patni Internal

Page 81 of 154

C Programming

printf(“\n\n”);

[* accepting elements of the array */
printf(“ Enter no.s:\n");
for(i=0; i <row; i++)

{
for(j=0; j<col; j++)
{
scanf(“%d”, ptr[i]+j);
fflush(stdin);
}
}

[* displaying elements of thearray */
printf(* Numbers:\n”);
for(i=0; i <row; i++)

{
for (j=0; j<col; j++)
{
printf(“%d\t”, ptr[i][j]);
}
printf(“\n”);
}
}
Output:

Enter Number of Rows :2
Enter Number of Columns:2

Enter no.s:
101214 16
Numbers:
1012
14 16

Pictorial Representation of above code:

At Declaration ptr
1234 |¢——— aunkvaue
1028
After allocating memory for row ptr rowl (OW2
5000 —
= A 3 P 1028 al 5000 5004

‘age 82 of 154

C Programming

After allocating memory for columns

ricl ric2
» 10 12
ptr rowl row?2 200 3268
5000 —» 3 88
r2cl r2c2
1028 5000 5004 " 16
—>
7886 7890
((ptr+0)+0) Value at rlcl 10
((ptr+0)+1) Value at rlc2 12
((ptr+1)+0) Value at r2cl 14
((ptr+1)+1) Value at rlcl 16

6.12 Dynamic Memory Allocation

In many programs, the number of data items to be processed by the program and their sizes are
not known.

C provides a collection of dynamic memory management functions that enable storage to be
alocated as needed and released when no longer required. Their prototypes are declared in
alloc.h header file (under Borland C) and in malloc.h header file (under Unix and Windows).

The dlocation of memory in this manner, as it is required, is known as ‘Dynamic Memory
Allocation'’.

6.12.1 void* malloc(size)

malloc() is used to obtain storage for a data item. The dlocation of storage by calling this
function yields a pointer to the beginning of the storage alocated and is suitably aligned, so that it
may be assigned to a pointer to any type of dataitem.

Suppose that x is to be defined as a one-dimensiond, 10-element array of integers. It is possible
to define x as a pointer variable rather than as an array. Thus, we can write

| int *x;

instead of

— Patni Internal Page 83 of 154

C Programming

int x[10];
or instead of

define SIZE 10
int x[SIZE]J;

However, x is not automatically assigned a memory block when it is defined as a pointer variable,
where as block of memory large enough to store 10 integer quantities will be reserved in advance
when x is defined as an array.

To assign sufficient memory for x, we can make use of the library function malloc(), as follows
x = (int *)malloc(10 * sizeof(int));
Format

void* malloc(size);
Where size is the number of bytes required.

Note: Since malloc() returns a pointer to void data type it needs to be typecasted. void*
return type can be used to make general purpose functions.

To be consstent with the definition of X, we realy want a pointer to an integer. Hence, we
include atype cast to be on the safe side, that is,

x = (int *) malloc(10 * sizeof(int));
For example, if
float *fp, ma[10];

then
| fp=(float *)malloc(sizeof(ma)); |

alocates the storage to hold an array of 10 floating point elements and assigns the pointer to this
storageto fp.

6.12.2 void* calloc(nitems, size)

void *calloc(nitems, size)

calloc() function work exactly similar to malloc() except for the fact that it needs two arguments
as against the one argument required by malloc().

Genera format for memory alocation using calloc() is
void *calloc(nitems, size);

where,
nitems The number of itemsto alocate
Sze Size of each item
For example,
| ar=(int *)calloc(10, sizeof(int));
__— Patni Internal Page 84 of 154
F—-'

C Programming

allocates the storage to hold an array of 10 integers and assigns the pointer to this storage to ar.
Note: Whileallocating memory using calloc(), thenumber of itemswhich areallocated, are
initialized.

6.12.3 void* realloc(void *block, size)

| void *real |l oc(void *bl ock, size) |

Generd format for memory alocation using realloc() is
| voi d *real l oc(void *bl ock, size); |
where,

block Points to a memory block previoudy obtained by calling malloc(), caloc() or
realloc().

qze New size for alocated block.

realloc() returns a pointer to the new storage and NULL if it not possible to resize the data item,
in which case the data item (*block) remains unchanged. The new size may be larger or smaller
than the origina size. If the new size is larger, the origina contents are preserved and the
remaining space is uninitialized; if smaler, the contents are unchanged up to the new size.

Note: The function realloc() works like malloc() for the specified size if block isa null
pointer.

For example, if

char *cp;
cp=(char *)malloc(sizeof(“ computer”);
strepy(cp, " computer™);

then cp points to an array of 9 characters containing string “ computer”.

The function call,

cp=(char *)realloc(cp,sizeof(“ compute”);

discards the trailing \O' and makes cp point to an array of 8 characters containing the string
“compute”.
whereas the call

cp=(char *)realloc(cp, sizeof (“ computerization”);

makes cp point to an array of 16 characters.

6.12.4 free(ptr)

The memory allocated by the malloc(), calloc or redloc() function is not destroyed automeaticaly.
It hasto be cleared by using the function free().

| free(ptr);

where,

ptr is a pointer variable to which memory was alocated, free (ptr) clears the memory to which ptr
points to.

. B Patni Internal Page 85 of 154

Pt C: Entl

C Programming

/* Exanple : function returning void* */
#i ncl ude <stdi o. h>
#i ncl ude <mal | oc. h>

voi d

{

voi d

}

mai n(voi d)

voi d *message(void);

int *int_ptr;

char *char _ptr;

int_ptr = (int *)nmessage();

char_ptr = (char *)nessage();

printf("int= % , char=%.2s\n", *(int_ptr), char_ptr);

*message(voi d) alocating memory for int

int *i; pointer
i = (int *)malloc(sizeof (int)?);

*i = 16707;

return i; /* returning pointer to int */

This function reserves a block of memory whose size (in bytes) is equivalent to the size of an
integer quantity. The function returns a pointer to void type, which can safely be converted to a
pointer of any type.

/* Example using malloc(), realloc() and free() */
#include <stdio.h>

#include <stdlib.h>

void main(void)

{

int *marks = (int*)malloc(4 * sizeof(int));
int mark, i, n=0, siz=3;
/* mark iscurrent student's mark,
n isnumber of marksinput upto now,
sizisinteger which had current size of thearray */
printf("\nEnter marks(Enter -1 to stop) : \n");
scanf(" %d", & mark);
while(mark !=-1)
{
if(n >=siz)
{
Siz +=4;
printf(" Reallocate 4 moreintegers...Success\n");
mar ks=(int*)realloc(marks, siz * sizeof(int));

Patni Internal Page 86 of 154

C Programming

}

if(marks==(int *)NULL)
{

printf(" Not enough memory! \n");

exit(1);

else

printf(" Enter marksfor 4 students(-1 to stop) \n");

}
markg[n]=mark;
fflush(stdin);

scanf(" %d" ,& mark);
N++;

/* Output the marks*/
printf(" The marksentered are.. \n");
for (i=0; i<n; i++)

}
Output:

80

printf(" %d ", markdi]);

Enter marks(Enter —1 to stop):

10

20

30

40

Reallocate 4 mor e integer s...Success
Enter marksfor 4 students(-1 to stop)
50

60

70

Reallocate 4 mor e integer s...Success!
Enter marksfor 4 students(-1 to stop)
-1

The marksentered are..

10 20 30 40 50 60 70 80

A buffer of 4 integers is adlocated first, and then increase its size by 4 integers (16 bytes) every
time the buffer overflows.

Patni Internal

Page 87 of 154

C Programming

6.13 Pointer Declarations

int*p; p is pointer to integer.

int *p[10] ; pisalO-eement array of pointers to integer

int (*p)[10] ; pointer to 10-element integer array.

int *p(void) ; p is a function that returns pointer to integer,
argument isvoid

int p(char *a); p is a function, which returns integer, argument, is
char pointer.

int *p(char *a) ; p is a function which returns pointer to integer
argument is char pointer.

int (*P)(char *a) ; P is a pointer to a function that returns integer,
argument is char pointer

int (*P(char *a))[10] ; P is function that returns pointer to 10-element
integer array, the argument is char pointer.

int p(char (*&[]) ; P is function that returns integer, accepts pointer
to char array.

int p(char *a[]); Pis afunction that returns integer, accepts array
of pointersto character as argument.

int *p(char (*a(]) ; p is a function returns pointer to integer,
argument is pointer to char array.

int *(*p)(char (*a[]) ; p is a pointer to function, returns int pointer
accepts pointer to char array as argument

Table 6.1: Pointer declarations.

6.14 Command L ine Arguments

Parameters or Values can be passed to a program from the command line which are received and
processed in the main function. Since the arguments are passed from the command line hence
they are called as command line arguments. This concept is used frequently to create command
files. All commands on the Unix Operating System use this concept.

Eg:
k C.\>Commli neTest.exe argl arg2 arg3 ..
where,
CommLineTest.exe Executable file of the program
argl, arg2, arg3... Actual parameters for the program

Two built in formal parameters are used to accept parametersin main.

argc: containsnumber of command line arguments. It is of typeint.
argv: A pointer toan array of stringswhere each string representsatoken of the
arguments passed. It isa character array of pointers.

Eg:

— B Patni Internal Page 88 of 154

C Programming

C:\>Tokens.exe abc 10 xyz

The value of argc will be 4.
The contents of argv will be

argv[0] “Tokens.exe”

argv[1] “abc”

argv[2] “10°

argv[3] “xyz”’
Fig6.7: argv

The main in acommand line argument program will look as follows

main(int argc, char *argv[])

All data types int, float or char are accepted in argv as strings. So to perform mathematical
operations with them, they must be converted to int. This can be done using the function
atoi(argv[2]). This will convert the argument to int. Smilarly there are functions atof, atol. The
header file stdlib.h must be included while using these functions.

— Patni Internal Page 89 of 154

C Programming

[Structures

Arrays provide the facility for grouping related data items of the same type into a single object.
However, sometimes we need to group related data items of different types. An example is the
inventory record of a stock item that groups together its item number, price, quantity in stock,
reorder level etc. In order to handle such stuations, C provides a data type, caled
struct ur es, that alows afixed number of dataitems, possibly of different types to be treated
asasingle object. It isused to group al related information into one variable.

7.1 Basicsof Structures

St ruct ur e isacollection of logicaly related data items grouped together under a single name,
cdledastructure tag.

The data items that make up a structure are caled its menber s or fi el ds, and can be of
different types.

The general format for defining a structure is:

struct tag_nane
{
dat a_type menber 1;
dat a_type menber 2;
}
Fig 7.1: Format for defining a structure
where,
struct A keyword that introduces a structure definition.
Tag_name The name of the structure
memberl, member2 Set of type of declarations for the member data items that make up
the structure.

For example, the structure for the inventory record of a stock item may be defined as

struct item
tr
int itemo;
float price;
float quantity;
int reorderl evel;
s

Consider another example, of a book database consisting of book name, author, number of pages
and price.

Patni Internal Page 90 of 154

C Programming

To hold the book information, the structure can be defined as follows

struct book_bank

{
char title[15];
char author[10];
i nt pages;
float price;

};

The above declaration does not declare any variables.

template to represent information as shown below:

struct book _bank

titte array of 15 characters
author array of 10 characters
pages integer

price float

Following figure illustrates the compostion of this book database schematicaly.

It smply describes a format called

book _bank

(structure)

title

Author

pages

price

(member)

(member)

(member)

(member)

Fig 7.2: Structurefor a book

All the members of a structure can be of the same type, as in the following definition of the

structure date

struct date

i nt day, nont h, year;

b

Patni Internal

Page 91 of 154

C Programming

7.1.1 Declaration of Individual Members of a Structure

The individua members of a structure may be any of the common data types (such as int, float,
etc.), pointers, arrays or even other structures.

All member names within a particular structure must be different. However, member names may
be the same as those of the variables declared outside the structure.

Individua members cannot be initialized inside the structure declaration.

7.1.2 Structure Variables

A dtructure definition defines a new type, and variables of this type can ke declared in the
following ways

In the structure declaration: By including a list of variable names between the right brace and the
termination semicolon in the structure definition.

For example, the declaration

struct student

{
int rollno;
char subject[10];
fl oat marks;

} studentl, student?2;

declares student1, student2 to be variables of type struct student.

If other variables of the structure are not required, the tag name student can be omitted as shown
below

struct
{
int rollno;
char nane[10];
fl oat marks;
} studentl, student?2;

Using the structure tag

The structure tag can be thought of as the name of the type introduced by the structure definition
and variables can aso be declared to be of a particular structure type by a declaration of the form:

struct tag variable-list;

For example,

| struct student studentl,student2;

declares student1 and student?2 to be variables of type struct student.

Patni Internal Page 92 of 154

C Programming

7.1.3 Structure Initialization

A variable of particular structure type can be initialized by following its definition with an
initializer for the corresponding structure type. Initializer containsinitia values for components
of the structure, placed within curly braces and separated by commas.

Thus, the declaration

struct date

{
i nt day, nont h, year;
}independence={15, 8, 1947},

initidizes the member variables day, month and year of the structure variable independence to 15,
8 and 1947 respectively.

The declaration

| struct date republic ={26, 1, 1950};

initializes the member variables day, month and year of the structure variable republic to 26, 1
and 1950 respectively.

Considering the structure definition student (defined in 8.1.2), the declaration
| struct student student1={1,” Ashwi ni”, 98. 5};

initidlizes the member variables rollno, name and marks of the structure variable studentl to 1,
“Ashwini” and 98.5 respectively.

If there are fewer initidizers than that of member variables in the structure, the remaining
member variables are initialized to zero.

Thustheinitidization

struct date newyear={1,1};

iS same as

struct date newyear={1,1,0};

714 Accessing Structure Members

With the help of dot operator(.), individua elements of a structure can be accessed and
the syntax is of the form

structure-variablemember-name;

Thustorefer to name of the structur e student, we can use

studentl.name;

Patni Internal Page 93 of 154

C Programming

The statements,

struct date emp; (dateisdefined in 8.1.3)
emp.day=28;

emp.month=7,

emp.year=1969;

set the values of the member variables day, month and year within the variable emp to 28, 7 and
1969 respectively and the statement

struct date today;
if(today.day==1& & today.month==1)
printf(“Happy New Year”);

tests the values of day and month to check if both are 1 and if so, prints the message.
The elements of a structure are aways stored in contiguous memory locations. It is shown below

emp.day emp.month emp.year

28 7 1969

Following are some example given using structures

/* Programto print the date using structure variable */
include<stdio. h>
voi d mai n(voi d) Structure

{ definition
struct date
{

defining a structure variable

char nont h[15] ;
i nt day, year;
b :

struct date today; accessing and initidizing structure

t oday. day=11; — | member

printf(“Enter Month : ");
scanf (“% ~\'n]”, today. nont h) ;
t oday. year =1998;
printf(“\nToday's date is %d-9%-% \n",
t oday. day, t oday. nont h, t oday. year) ;

* % % Stl’h * % %
struct date

{

i nt nont h, day, year;

H

—— ~ q Patni Internal Page 94 of 154

C Programming

* k% Erog'C***
/* Program pronpts the user for today’'s date and prints

tonorrow s date */
include<stdi o. h>
include “str.h”
voi d mai n(voi d)
{
struct date today;
struct date tonprrow,
static int day_nonth[12]=
{31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
printf(“Enter Today' s date (dd:mmyy): ”);
scanf (“%%%” , & oday. day, & oday. nont h, & oday. year);
i f(today. day > day_nont h[t oday. nont h-1])
{
printf(“\n Invalid Date \n");
exit(0);

i f(today. day! =day_nont h[t oday. nont h- 1])
{

t omor r ow. day=t oday. day+1;

t onor r ow. nont h=t oday. nont h;

t onorrow. year =t oday. year;

el se if(today. nont h==12)
{
t onorr ow. day=1;
t onor r ow. nont h=1;
t onorr ow. year =t oday. year +1;

}

el se

{
t onorr ow. day=1;
t omor r ow. nont h= t oday. nont h+1;
t onorr ow. year =t oday. year;

}
printf(“\'n Tonmorrow s date is %-%-% \n”,

t onor r ow. day, t onor r ow. nont h, t onor r ow. year) ;

}

One structure can be copied to another structure of same type directly using the assignment
operator as well as element by element basis like arrays.

In this case, the values of members of a structure variable get assigned to members of another
structure variable of the same type.

— B Patni Internal Page 95 of 154

C Programming

Itisillustrated in the following example.

*** gtrdef.h ***
struct date

{

char nont h[5];
i nt day, year;

} .

include <stdio. h>
include <string. h>
include “strdef.h”
voi d mai n(voi d)

{

struct date today={“March”, 1, 98};

/

/* copying el ement by el enment basis */

struct date dayl, day2;

/* Exanple - To copy a structure to another structure */

strcpy(dayl. nont h, t oday. nont h) ;

dayl. day=t oday. day;
dayl. year =t oday. year;

/* copying entire structure to another structure */

day2=day1;

printf(“\n Date is % % % \n”,

t oday. day, t oday. nont h, t oday. year) ;

printf(“\nDate is % % % \n",

dayl. day, dayl. nont h, dayl. year) ;

printf(“\n Date is %d % % \n”,

day?2. day, day2. nont h, day2. year) ;

accessing structure date
defined in strdef.h

7.2 Nested Structures

The individual members of a structure can be other structures as well. It is termed as Nest ed
St ruct ur es. Wewill include a new member date which itsdlf is a structure. 1t can be donein

two ways.

Thefirst way is by declaring

struct date

{
i nt day, nont h, year;
b
struct enp
{
char nane[15];
struct date birthday;
float salary;
b

Patni Internal

Page 96 of 154

C Programming

The embedded structure date must be declared before its use within the containing structure.

The second way is by declaring

struct enp
{

char nane[15];
struct date

{

i nt day, nont h, year;
} bi rt hday;
fl oat sal ary;

H

In this method, we combine the two structure declarations. The embedded structure date is
defined within enclosing structure definition.

In the first case, where the date structure is declared outside the emp structure, it can be used
directly in other places, as an ordinary structure. Thisis not possible in second case.

Variables of a nested structure type can be defined as usua. They may aso be initialized at the
time of declaration as
struct enp

{

char nane[15];
struct date

{
i nt day, nont h, year;
} bi rt hday;
fl oat sal ary;
}person = {“Ashwi ni ", {28, 7, 1969}, 5000. 65} ;

Theinner pair of bracesis optional.

A particular member inside a nested structure can be accessed by repeatedly applying the dot
operator. Thus the statement

person.birthday.day=28;

sets the day variable in the birthday structure within person to 28.

The statement

printf(“ %d-%d-%d” ,per son.birthday.day,per son.birthday.month,
per son.birthday.year);

prints date of birth of a person.

However, a structure can not be nested within itsalf.

Patni Internal Page 97 of 154

C Programming

7.3 Structuresand Arrays

Arrays and structures can be freely intermixed to create arrays of structures, structures containing
arrays.

7.3.1 Arrays of Structures

In the array of structures array contains individual structures as its elements. These are
commonly used when alarge number of similar records are required to be processed together.

For example, the data of motor containing 1000 parts can be organized in an array of structure as

| struct item motor[1000];

This statement declares motor to be an array containing 1000 elements of the type struct item
An array of structures can be declared in two ways as illustrated below.

Thefirst way is by declaring

struct person
{
char nane[10];
struct date birthday;
fl oat sal ary;
}enprec| 15];

In this case, emprec is an array of 15 person structures. Each element of the array emprec will
contain the structure of type person. The person structure consists of 3 individua members: an
array name, salary and another structure date.

The embedded structure date must be declared before its use within the containing structure.

The second approach to the same problem involves the use of the structure tag as below.

struct person

{
char nane[10];
struct date birthday;
fl oat salary;

b,

struct person enprec[15];

Patni Internal Page 98 of 154

C Programming

Following program explains how to use an array of structures.

/* Exanple- An array of structures */
i ncl ude<stdio. h>
voi d mai n(voi d)
{
struct book
{
char nane[15];
i nt pages;
float price;
b
struct book b[10];
int i;
printf(“\n Enter nanme, pages and price of the book\n”);
/* accessing elenments of array of structures */
for(i=0;i<9;i++)
{
scanf (“%%% ", b[i].nane, &J[i]. pages, &lJi].price);
printf(“\n");

printf(“\'n Name, Pages and Price of the book :\n");
for(i=0;i<=9;i++)
{
printf(“% % % ”,b[i].name,b[i].pages,b[i].price);
}

7.3.2 Arrays within Structures

A structure may contain arrays as members. This feature is frequently used when a string needs
to beincluded in astructure. For example, the structure date (declared in 8.1.3) can be expanded
to aso include the names of the day of the week and month as

struct date
{ char weekday[10];
i nt day;
i nt nonth;
char nont hname[10] ;
int year;
1

A structure variable ndate can be declared and initialized as—

struct date ndate={" Sunday”,21,11,” November” ,2004};

An element of an array contained in a structure can be accessed using the dot and array subscript
operators.

—— ~ q Patni Internal Page 99 of 154

C Programming

Thus the statement,
| printf(“ %c” ,ndate.monthname{2));
prints v.

7.4 Structuresand Pointers
7.4.1 Pointers to Structures

The beginning address of a structure can be accessed in the same manner as any other address,
through the use of the address of (&) operator.

Thus, if variable represents a structure-type variable, then
| & variable I

represents the starting address of that variable. Moreover, we can declare a pointer variable for a
structure by writing

| type *ptvar; |
where,

type A data type that identifies the composition of the structure

ptvar The name of the pointer variable

Pointer variable holding address of structureis called Structure Pointers.

For example, the declaration
| struct date ndate,* ptrndate;

declares ndate to be a variable of type struct date and the variable ptrndate to be a pointer to a
struct date variable.

Consider the following example

Consider the following structure declaration, in
typedef struct

{

int acct _no;
char acct_type;
char nane[20];
fl oat bal ance;
dat e | ast paynent;
}account ;
account custoner, *pc;

In this example, customer is a structure variable of type account, and pc is a pointer variable
whose object is a structure of type account.

The address operator (&) is applied to a structure variable to obtain the beginning address of
customer. It can be assigned to pc by writing

| pc=& customer; I

Patni Internal Page 100 of 154

C Programming

The variable and pointer declarations can be combined with the structure declaration by writing

struct

{
member 1;

menber 2;
menber n;
}vari abl e, *pt var;
Where,
variable A gtructure type variable
ptvar The name of a pointer variable

The following single declaration i equivalent to the two declarations presented in the previous
example
struct

{

i nt acct_no;

char acct _type;

char nane[20];

fl oat bal ance;

dat e | ast paynent;
} cust omrer, *pc;

The pointer variable pc can now be used to access the member variables of customer using the
dot operator as

(*pc) . acct _no;
(*pc) . acct _type;
(*pc) . naneg;

The parentheses are necessary because the dot operator(.) has higher precedence than that of the
dereferencing operator(*).

The members can also be accessed by using a special operator caled the structure pointer or
arrow operator (->).

The general form for the use of the operator -> is

| printer_name->member_name;

Thus,

if pc=& customer
pc->balance=(* pc).balance=customer .balance

where, balance is member of structure customer.

It is possible to take addresses of the member variables of a structure variable.

Patni Internal Page 101 of 154

C Programming

For example, the statement

| float *ptrbal=& customer .balance;

defines ptrbal to be a floating point winter and initializes it to point to the member variable
balance within the structure variable customer .

The pointer expression & customer.balance is interpreted as & (customer.balance) since, the
precedence of the dot operator is higher than that of the address operator.

[* Example- structure pointers*/
include <stdio.h>
#include " str.h"

struct

{
int acct_no;
char acct_type;
char *name;
float balance;

struct date *lastpayment;
}customer, *pc = & customer;
struct date PaymentDate;
void main(void)

{
PaymentDate.day = 26 ;
PaymentDatemonth =1 ;
PaymentDate.year = 1999 ;
customer .acct_no=55;
customer .acct_type="A";
customer.name="Ashwini";
customer .balance=99.99;
customer .lastpayment = & PaymentDate ;
printf(" Account:%d\n" ,pc->acct_no);printf(" Acc_Type : %c\n" ,pc->acct_type);
printf(" Name : %s\n" ,pc->name);
printf(" Balance : %.2f \n" ,pc->balance);
printf(" LastPayment : % 2d-% 2d-%4d \n",
pc->lastpayment->day,pc->lastpayment->month,
pc->lastpayment->year);
}

Within the second structure, the members acct_no, acct_type, name and balance are written as
pointers. Thus, the value to which acct no points can be accessed by writing either
*customer.acct_no or *p->acct_no. Same in case of acct_type and balance.

— B Patni Internal Page 102 of 154

C Programming

A string can be assigned directly to a character type pointer. Therefore, if name points to the
beginning of a string, then the string can be accessed by writing either customer.name or pc-
>name.

Allocating Memory for Pointer to a Structure

Memory from the heap is to be alocated for a pointer to a structure if you want to store some
data, thisis done by using malloc() function.

Example:

typedef struct

{
char name[20];

char addresg[20];
int empid;
jemp,*empptr;

The memory to store information about 10 employees can be allocated by the statement

empptr=(emp*)malloc(10* sizeof (emp));

After the memory is alocated you can use the pointer to get the information as follows

for (i=0;i<10;i++)
{
scanf(“ % s% s% d” ,empptr[i].name,empptr[i].address, & empptr[i].empid);

}

7.4.2 Structures Containing Pointers

A structure can contain pointers as member variables.

For example, the structure definition

struct location
{
char *name;
char *addr;
1

defines a structure location that contains two character pointers, name and addr as member
variables. Variables of type struct location can now be defined and manipulated asin:

struct location att={"Ashwini”,”Boston’s Conputer Institute”};
struct |ocation ibm

i bm nane="R&D";

i bm addr="Bel | Labs, California”;

Patni Internal Page 103 of 154

C Programming

include “str.h”
struct person

*** gtrl.h ***

accessing structure date
defined in str.h

{ char nane[20] ; /
char *| astnane;
struct date birthday;
float *sal ary;
}enpr ec;
k* M*
[* Example- structure containing pointers*/
#include<stdio.h>
#include“str1.h”
void main(void)
{
float Xx;
struct person *ptr = & emprec;
struct date *birth = & emprec.birthday;
strcpy(emprec.name,” Ashwini”);
emprec.lastname="A.";
ptr->birthday.day = 28;
emprec.birthday.month = 7;
birth->year = 97,
x=5000;
ptr->salary = & x;
printf(* *** Employee Details*** \n");
printf(* Name :%s %s\n” ,ptr->name,ptr->lastname);
printf(“ Birthdate: %d:%d:%d \n" ,(*ptr).birthday.day,
birth->month,emprec.birthday.year);
printf(“ Salary :%6.2f” ,emprec.salary);
}
Output:

*** Employee Details ***

Name: Ashwini A.
Birthday: 28:7:97
Salary: 5000.00

Patni Internal

Page 104 of 154

C Programming

7.5 Pictorial Representation of Above Code

ptr

birth

emprec
name
Ashwini \0
lastname
lastname
birthday
day
28
month
7
year
97
salary
salary

> “A.”

>

5000.00

Line 3 includes definition of struct person as well as the variable emprec as part of the program.
Line 7 declares a pointer to emprec.

Line 8 declares a pointer to the structure birthday which is part of emprec.

Note the different methods of accessing structure elementsin lines 11, 12, 13.
Line 15 initidlizes sdary to point to x.

Patni Internal

Page 105 of 154

C Programming

Allocating Memory for Structure containing Pointer

When there is member of a structure, which is pointer to a structure, it is not enough to alocate
memory for the pointer to the structure but you have to allocate memory for member pointer too.
Exanpl e:
t ypedef struct

char* nane;

char* address;

i nt enpid;
}enp, *enpptr;

e Following program illustrates memory alocation of pointer within structure. The program
alows the user to enter total number of employees and size of name at runtime.

include <stdio. h>
include <alloc. h>
include <string. h>
voi d mai n(voi d)
o .
int n,i,j;
typedef struct
{
i nt enpno;
char *nane;
}enp;
enp *enpptr;
char nane[80]
printf("Enter total no. of enployees:");
scanf (" %", &n);
fflush(stdin);
enpptr = (enp *) malloc(n * sizeof(enp));
for(i =0 ; i <n; i++)
{
printf("\n Enter enpno of enployee (%) :",i+1);
scanf (" %", &npptr[i].enpno);
fflush(stdin);
printf("\n Enter nane :");
scanf ("% "\ n]", nane);
fflush(stdin);
enpptr[i].name = (char *) malloc(strlen(nanme) *
sizeof (char) + 1);
strcpy(enmpptr[i].nane, nane) ;
for(i=0;1i < n ; i++)
{
printf("\nno-% \tnane-9%",enpptr[i].enpno,
enpptr[i].nane);
}
}
> A 7 1 Patni Internal Page 106 of 154

C Programming

7.6 Structuresand Functions

A structure type definition may be loca to a function or it may be externa to any function.
Structures may be passed as function arguments and functions may return structures.

7.6.1 Structures as Function Arguments

C provides three methods of passing structures to a function. They are explained below:
Passing Structure Member to Function

This method involves supplying structure members as the arguments in a function call. These
arguments are then treated as separate non-structure values, unlessthey themselves are structures.

To illugtrate this method, an example is given below
*rxostr2.h *x*

include “str.h”

typedef struct accessing structure date
{ defined in str.h

char nane[20];

dat e birthday;

float salary;
} person, enprec;

*** strfun.c ***
/* Exanpl e- structure nenber as function argunents */

include <stdio. h>

include “str2.h”

defi ne CURRENT_ YEAR 98

float increnent(float sal,int year,int inc)

i f (CURRENT_YEAR - year > 30)
sal += inc;
return(sal);

}

voi d nmai n(voi d)

{
i nt n=500;
/* give increnents to enployees if age is grater than 30 */
enprec per={"Rohit Tamhane", 5,9, 79, 4000. 50} ;
printf(" *** Enployee Details ***\n");
printf("Name :9% \n", per.namne);
printf("Birthdate: %l: %: %d\ n", per. bi rt hday. day,
per . bi rt hday. nont h, per. bi rt hday. year);
printf("Salary :9.2f \n\n", per.sal ary);
per. sal ary=i ncrenent (per. sal ary, per. bi rt hday. year, n);
printf(" *** Enployee Details *** \n");
printf("Nanme :% \n", per.nane);
printf("Birthdate: %l: %: %3d \ n", per. bi rt hday. day,
per. bi rt hday. nont h, per. bi rt hday. year) ;

— —~ 7 Patni Internal Page 107 of 154

C Programming

printf("Salary :9.2f \n", per.salary);
}

Cut put :

*** Enpl oyee Details ***
Nane: Rohit Tamhane
Birthday: 5:9:67
Sal ary: 4000. 00

*** Enpl oyee Details ***
Name: Rohit Tamhane
Bi rt hday: 5:9:67
Sal ary: 4500. 00

Structure members per.salary, per.birthday.year and n are passed to the function increment().
The parameter sd is manipulated and returned from the function increment().

The function increment() checks the age of the employee and gives an increment of 500, if his
ageis above 30. The amount to be incremented is also passed to incrementy().

The disadvantage of this method is that the relationship between the member variables
encapsulated in a structure is lost in the called function. This method should only be used if afew
structure members need to be passed to the called function.

Passing Entire Structure to Function

Second method involves passing the complete structure to a function by smply providing the
name of the structure variable as the argument in the function call. The corresponding parameter
in the called function must be of the same structure type.

To illustrate this method, an example is given below

/* Exanple- Entire structure as function argunments */

1 ncl ude<stdio. h>
struct book
{
char nane[20];
char aut hor[10];
i nt pages;
voi d mai n(voi d)
{
voi d di splay(struct book);
static struct book bl={"Programmng in C',"Stephen", 300};

di spl ay(bl);
}
voi d di splay(struct book b)
{

printf("Nanme :%\n Author :9%\nPages :%\n",

b. nane, b. aut hor, b. pages) ;

}
> 7 ~ g Patni Internal Page 108 of 154

C Programming

Qut put
Nane: Programmng in C
Aut hor: St ephen
Pages: 300

Structure book has made globa by defining it outside main(), so dl the functions can access the
structure book.

When a structure variable bl is passed directly as an argument to the function, it is passed by
value like an ordinary variable.

Passing Structure Pointers to Functions
The third method involves passing pointers to the structure variables as the function arguments.

In the Situations where, more than one member variable is computed in the function, pointers to
structures are used.

If the pointer to a structure is passed as an argument to a function, then any change that are made
in the function are visible in the caller.

/* Exanple- structure pointers as function argunments */
include <stdio. h>
include “str2.h”
define CURRENT_YEAR 98
voi d i ncrement (enprec *x)
{
i f (CURRENT_YEAR - x->birthday.year > 30)
x->sal ary += 500;
}
voi d mai n(voi d)
{
enprec per={"Aniruddha", 27, 10, 62, 5500} ;
printf(" *** Enployee Details ***\n");
printf("Name :% \n", per.nane);
printf("Birthdate: %l: %l: % \n", per.birthday. day,
per. bi rt hday. nont h, per. bi rt hday. year) ;
printf("Salary :9.2f\n \n", per.sal ary);
/* give increments to enployees if age is grater than 30 */
i ncrement (&per);
printf(" *** Enpl oyee Details ***\n");
printf("Nanme : 9% \n", per.nane);
printf("Birthdate: %l: %l: %d\ n", per. bi rt hday. day,
per. bi rt hday. nont h, per. bi rt hday. year);
printf("Salary :9%.2f\n", per.sal ary);
}
— ~ g Patni Internal Page 109 of 154

C Programming

Qut put
*** Enpl oyee Details ***
Name: Aniruddha
Bi rt hday: 27:10:62
Sal ary: 5500. 00
*** Enmpl oyee Details ***
Name: Aniruddha
Bi rt hday: 27:10:62
Sal ary: 6000. 00

The address of the per structure variable is passed to incrementy().

This method becomes particularly attractive when large structures have to be passed as function
arguments because it avoids copying overhead.

Thisisillugtrated in the following program.

/* Exanple - structure as function argunents */
incl ude<stdio. h>
include “str2.h” /* str2.h defined above */
voi d mai n(voi d)
{
voi d printout (enprec);
enprec record;
printf("Enter Nane:");
scanf (" %", record. nane) ;
fflush(stdin);
printf("\n Enter Date of Birth:");
scanf (" %%%" , & ecor d. bi rt hday. day,
& ecord. bi rt hday. nont h, & ecord. bi rt hday. year);
fflush(stdin);
printf("\n Enter Salary: ");
scanf ("% ", & ecord. sal ary);
printout(record);
}
voi d printout (enprec per)
{
printf(" *** Enployee Details ***\n");
printf("Name: % \n", per.nane);
printf("Date of Birth : %d: %l: %\ n", per. bi rt hday. day,
per. bi rt hday. nont h, per. bi rt hday. year);
printf("Salary: 9%.2f \n\n", per.salary);
}
Cut put :
Ent er Nane: Anur adha
Enter Date of Birth:3 12 46
Enter Sal ary: 6500
*** Enpl oyee Details ***
Name: Anur adha
Birt hday: 3: 12: 46
Sal ary: 6500. 00
— ~ g Patni Internal Page 110 of 154

C Programming

7.6.2 Structures as Function Values

Structures can be returned from functions just as variables of any other type. Instead of accepting
apointer to a structure, it can construct a structure by itself and return this structure variable.

/* Exanpl e- structures and functions */
include<stdio. h>
struct tine

{
int mn,hr, sec;
s
voi d mai n(voi d)
{

struct tine time_udt(struct tine);

struct tinme or_tinme, nx_tine;

printf("Enter tinme(hh:mmss):");

scanf ("%: %l: %d", &or tinme. hr, &r tinme.mn, &r tine. sec);

nx_ time = tinme_udt(or_tine);

printf("Updted tine is :9%d: %2d: %2d\n", nx_tine. hr,
nx_time.mn,nx_tinme.sec);

struct time time_udt(struct tinme now)
{
struct tinme new_tine;
new_t i me=now,
++new_ti ne. sec;
i f(new_time. sec==60)
{
new tine. sec=0;
++new_tinme. mn;
i f(new_tinme. m n==60)
{
new ti me. m n=0;
++new tine. hr;
i f(new_tinme. hr==24)
new ti ne. hr=0;
}
} |
return(new_tinme);

}

A structure or_time is passed as an argument to the function time_udt().
The function returns a value of type struct time.

The program prompts the user for the current time, updates the time by one second and printsiit.

— —~ 7 Patni Internal Page 111 of 154

C Programming

8 Data Structures
8.1 Linked Lists

A List refers to a set of items organized sequentially. An array is an example of list. In an array,
the sequentia organization is provided implicitly by its index. The mgor problem with the arrays
is that the size of an array must be specified precisely at the beginning, which is difficult in many
practical applications.

Linked list is a linked list of structures (called nodes) for which memory is alotted dynamicaly.
It is necessary to include an additional member that is pointer to structure.

Eg:

struct node

{
data_typeinfo;
struct node * next ;

5

Fig 8.1: Structureof anodein Singly linked list.
INFO INFO INFO INFO

Addr ess of Addr ess of Addr ess of NULL
Next Node Next Node Next Node

Fig 8.2: Pictorial representation of Singly linked list in Memory.

The additiona member pointer next, keeps the address of the next node in the linked list. The
pointer next of the last node aways points to NULL. One more pointer to structure must be
declared to keep track of the first node of the linked list, which is not a member pointer.

8.1.1 Creating a linked list

Creation of alinked ligt requires the following 3 steps to be performed.

1. Define the structure of the node that will hold the data for each element in the list. Let us
assume that the data we intend to store is the empid of the employee (which is unique), his name
and saary.

— Patni Internal Page 112 of 154

C Programming

The structure is defined as follows:

struct node
{
i nt enpid;
char nane[20];
fl oat sal ary;
struct node *next;
}

Fig 8.3: Structure for Employee nodein the Linked list
Note that the last element in the structure is a pointer to the next node in the list.

2. In alinked list nodes are created dynamically as and when required. So let us create a general-
purpose function that will return a node for which data has been entered by the user.

struct node *getnode() /* creates a node and accepts data */
{

struct node *tenp;

tenmp=(struct node *)mall oc(sizeof (struct node));

printf("enter the enpid:");

scanf (" %", & enp- >enpi d) ;

fflush(stdin);

printf("enter the name:");

scanf (" %", t enp- >nane) ;

fflush(stdin);

printf("enter salary:");

scanf ("% ", & enp- >sal ary) ;

fflush(stdin);

t enp- >next =NULL;

return tenp;

Fig 8.4: Codefor creation of a nodein the Linked list

The list needs a pointer that will point to the beginning of the list. For this, we shall create as a
global pointer that can be directly accessed by all the functions.

list

Fig 8.5: Header (list) for the Linked list
This pointer will beinitialized to NULL in the main function.

3. Link the new node to the list.

™ A 7 1 Patni Internal Page 113 of 154

it By C Eni

C Programming

Next, a function is required that will link a new node to the list. Let us cdl this function insert.
This function will take the address of the node to be inserted as a parameter. If the list is empty,
then the new node becomes the first node:

list

new

Fig 8.6: Making Header (list) to point thefirst node of the Linked list
Note that the dotted lines in the figure indicate the operation being performed in the list.

Assume that other nodes are required to be inserted in sorted order of empid. If the list is not
empty, the new node has to be added either to the beginning of the list or to the middle or end of
list:

8.1.2 To add to the beginning of the list

list

lig->next

i) -

new

Fig 8.7: Insertion of a node at the beginning of the Linked list

The new node has to point to the existing first eement of the list. This is done by the statement
new >next =l i st ;

and the list pointer must point to the new node:

| li st =new;

Patni Internal Page 114 of 154

C Programming

8.1.3 To add to the middle of the list

list

prev prev->next

[%

new

Fig 8.8: Insertion of a node at the middle of the Linked list

The new node has to be inserted after the node pointed by prev node then previous node should
point to new and new will point to next of prev.

new >next = prev->next;
prev->next = new,

814 To add to the end of the list

list

prev

new

Fig 8.9: Insertion of a node at the end of the Linked list

The last node should point to new node and new node should point null to become last node.

new >next = null;

Patni Internal Page 115 of 154

C Programming

which is equivaent to

new >next = prev->next;

then

prev->next = new,

8.1.5 Insertion of new node in the list

Note that in a singly linked list, nodes can only be inserted or deleted after a given node. So a
general-purpose search function will be needed which will return the address of the node after
which the new node is to be inserted/deleted. For the moment, let us assume a search function
that takes the empid as a parameter and returns the address of the last node whose empid value is
less than the given node. We can now code the insert function as

int insert(struct node *new)
{
struct node *prev;
int flag;
if (list==NULL) /* list enpty */

i st=new,
return O;
}
prev=sear ch(new >enpi d, & | ag) ;
if(flag==1) [/* duplicate enpid */
return -1;
i f(prev==NULL) /* insert at beginning */
{
new >next =l i st;
i st=new;
}
else /* insert at mddle or end */
{
new >next =pr ev- >next ;
pr ev- >next =new,

}

return O;

Fig 8.10: Code for insertion of a nodein the Linked list

8.1.6 Searching anodein the list

The search function traverses the list to find the first node whose empid value is greater than or
equal to the empid value received as a parameter. Flag is set to 1 if anodeis found with the same
empid vaue ese it is set to 0. Thus the search function can aso be used to find a node with a

" Patni Internal Page 116 of 154

it By C Eni

C Programming

given empid value. The search function can thus be used to display the details of a given node
(identified by empid). We display the details of the next node to that returned by search if flag is
set to 1. During insert however, if anode with the same empid is found the insert operation fails.

To code the search function:

struct node * search(int id,int *flag)

{
struct node *prev, *cur;
*f| ag=0;
if (list==NULL) /* list enpty */
return NULL;
for(prev=NULL, cur=list;((cur) &k ((cur->enpid) <id));
prev=cur, cur =cur - >next);
if((cur) && (cur->enpid==id))
/* node with given enpid exists */
*flag=1;
el se
*f 1 ag=0;
return prev;
}

Fig 8.11: Codefor creation of anodein the Linked list

8.1.7 Displaying the linked list

To display al the nodesin alinked list, we need to traverse the list sequentialy and print
the details

voi d displayall ()
{
struct node *cur;
systen("clear");
i f(list==NULL)
{
printf("list is enmpty\n");
return;
}
printf("enpid, name, salary\n");
for(cur=list;cur;cur=cur->next) {
printf("%d% 22s98. 2f\ n", cur - >enpi d, cur - >nane,
cur->sal ary);

Fig 8.12: Codefor displaying all nodesin the Linked list

—— ~ q Patni Internal Page 117 of 154

C Programming

8.1.8 Deletion of existing node from the linked list

To modify a node search for the node and accept the details again. To delete a node the links
have to be reformulated to exclude the deleted node. The memory alocated for the deleted node
must also be freed.

The node to be freed

e may not beexiding in the list
e may be thefirst node (in which case the list pointer must be reinitialised)
e may be any other node or the list may be empty.

To ddlete the first node

list

7\
tvan)

list->next

Fig 8.13: Deletion of the first node from the Linked list

temp=list; /* where tenp is defined as struct node */
list = list->next;
free(temp);

If thefirst node is dso the last node inthe list , list automatically becomes NULL.

e To deete other nodes

Fig 8.14: Deletion of the middle node from the Linked list

—— ~ q Patni Internal Page 118 of 154

C Programming

tenp=prev->next; /[/* prev is the node returned by search */
pr ev- >next =t enp- >next ;
free(temp);

e So the delete function can be coded as

int delete(int id)
{
struct node *prev, *tenp;
int flag;
if (list==NULL) /* list enpty */
return -1,
prev=search(id, & | ag);
if(flag==0) [/* enpid not found */
return -1,
i f(prev==NULL)
/*node to delete is first node(as flag is 1) */
{
tenmp=list;
list=list->next;
free(tenp);
}
el se
{
t enp=pr ev- >next ;
pr ev- >next =t enp- >next ;
free(temp);
}
return O;
}

Fig 8.15: Deletion of the first node from the Linked list

8.2 Complete Program for the operations of Linked list

Let us put the aove modules into a complete program that will insert, delete or display
information from asingly linked list

#i ncl ude<st di 0. h>
#i ncl ude<al | oc. h>
struct node

{
i nt enpid;
char nane[20];
fl oat sal ary;
struct node *next;
1

struct node *list; /* global pointer to beginning of list */

Patni Internal Page 119 of 154

C Programming

struct node * getnode() /*creates a node and accepts data */

struct node *tenp;
tenp=(struct node *)nall oc(sizeof (struct node));
printf("enter the enpid:");
scanf (" %", & enp- >enpi d) ;
fflush(stdin);
printf("enter the nane:");
scanf ("% ", t enp- >nane) ;
fflush(stdin);
printf("enter salary:");
scanf ("% ", & enp- >sal ary) ;
fflush(stdin);
t enp- >next =NULL;
return tenp;
}
/* search returns address of previous node; current node is */
struct node * search(int id,int *flag)

{
struct node *prev, *cur;
*f 1 ag=0;
if (list==NULL) /* list enpty */
return NULL;
for(prev=NULL, cur=list;((cur) && ((cur->enpid) < id));
prev=cur, cur =cur->next);
i f((cur)&&(cur->enpid==id))
/* node with given enpid exists */
*flag=1;
el se
*fl ag=0;
return prev;
}
int insert(struct node *new)
{
struct node *prev;
int flag;
if (list==NULL) /* list enpty */
list=new,
return O;
}
prev = search(new >enpid, & | ag);
if(flag == 1) [/* duplicate enpid */
return -1;
i f(prev==NULL) /*insert at beginning */
{
new >next =l i st ;
list=new,
}
else /* insert at mddle or end */
> 7 ~ g Patni Internal Page 120 of 154

C Programming

{

{

new >next =prev- >next ;
pr ev->next =new,

}

return O;

voi d displayall ()

struct node *cur;
systen("clear");
i f(list==NULL)

printf("list is enpty\n");
return;

printf("enpid nane salary\n");
for(cur=list;cur;cur=cur->next)

printf("%ld% 22s%8. 2f\ n", cur - >enpi d, cur - >nane,

cur->sal ary);

int delete(int id)

struct node *prev, *tenp;

int flag;
if (1ist==NULL) [* list enpty */
return -1;

prev=search(id, & | ag);
if(flag==0) /* enpid not found */
return -1,
i f(prev==NULL)
/* node to delete is first node (as flag is 1)

{

tenmp=list;
|ist=list->next;
free(tenp);

}

el se

{
tenp = prev->next;
prev->next = tenp->next;
free(tenp);

}

return O;

voi d nmai n(voi d)

*/

Patni Internal

Page 121 of 154

C Programming

struct node *new,
int choice=1,id;
i st=NULL;

do
{

fflush(stdin);

swi t ch(choi ce)

{

case 1 :

case 2 :

case 3 :

case 0 :

}mhi%e(choice 1=0);

printf("\n\n\n\n\n\t\t\t\tMenu\n\n");
printf("\t\t\t\tl. Insert\n");
printf("\t\t\t\t2. Delete\n");
printf("\t\t\t\t3. Display list\n");
printf("\t\t\t\tO0. Exit\n");
printf("\n\in\t\t\t\t...... enter choice:");
scanf (" %", &choi ce);

systen("clear");

new=get node() ;
if(insert(new) == -1)
printf("error:cannot insert\n");
el se
printf("node inserted\n");
getchar();
br eak;

printf("enter the enpid to delete:") ;
scanf ("%", & d);
fflush(stdin);
i f(delete(id)==-1)
printf("deletion failed\n");
el se
printf("node deleted\n");
getchar();
br eak;

di splayall ();
getchar();
br eak;

exit();

Fig 8.16: Complete code for Linked list operations

8.3 Doubly Linked List

Patni Internal Page 122 of 154

C Programming

A doubly linked list is very similar to the normal linked list, except that it has two links. One to
the next node and the other to the previous node. So, the Structure now has two additiona
member pointers for each link. The advantage of a doubly linked list is that you can traverse in
both directions using the doubly linked list. The structure definition now looks as follows:

E.g:

struct node

{
data_typeinfo;

struct node * next ;

struct node * prev ;

|

The linked program generaly remains the same, except that now you need to handle the
additiond link. So when a new node is to be added to an existing linked list, you need to assign to
the pointer prev, the address of the previous node.

84 Stacks

A stack is an ordered collection of items into which new items may be inserted and from which
elements may be deleted at one end, called top of the stack.

<4— top

X @ O(Om

Fig 8.17: A stack containing stack items.

The stack provides for insertion and deletion of items, so the stack is a dynamic, constantly
changing object. The definition specifies that a single end of the stack is designated as the stack
top. New items may be put on top of the stack, or items, which are at the top of the stack, may be
removed. The stack implements the concept of LI1FO (Last In First Out).

There are two operations that can be performed on a stack. When an item is added to the stacked,
it is pushed onto the stack, and when an item is removed, it is popped from the stack. Given a
stack s, and an item |, performing the operation push(s, i) adds the item i to the top of the stack s.
Similarly, the operation pop(s) removes the top element and returns it as a function value.

Thus the assignment operation

— —~ 7 Patni Internal Page 123 of 154

C Programming

i = pop(s);

removes the element at the top of sand assignsitsvauetoi.

8.5 Queues

A queue is an ordered collection of items from which items may be deleted at one end (caled the
front of the queue) and into which items may be inserted at the other end (caled the rear of the
gueue). The queue implements the concept of FIFO (First In First Out).

Three operations can be applied to a queue. The operation insert(g,x) insertsitem x at the rear of
the queue g. The operation x = remove(q) deletes the front element from the queue g and setsx to
its contents. The third operation, empty(q), returns false or true depending on whether or not the
(ueue contains any € ements.

Front
A|B]|C
—— Rea
@
Fron
Bl C
— Rear
(b)
Fron
Bl C| D| E
—— Rear
(©

Fig 8.18: A queue

The queue in Fig 8.3 can be obtained by the following sequence of operations. We assume that
the queueisinitidly empty.

insert(g, A);
insert(q, B); Fig8.2(a)
insert(q, C); Fig 8.2 (b)
X = remove(Q);
insert(q, D);
insert(q, E); Fig8.2(c)
~ A 7 0 Patni Internal Page 124 of 154

C Programming

9 FileHandling

In al the C programs considered so far, we have assumed that the input data was read from
standard input and the output was displayed on the standard output. These programs are
adequate if the volume of data involved is not large. However many business-related
applications require that a large amount of data be read, processed and saved for later use. In
such a case, the data is stored on storage device, usualy a disk.

9.1 Introduction

So far we have dealt with various input/output functions like printf(), scanf(), getchar() etc.
Now let us pay attention to the functions related to disk 1/0.

These functions can be broadly divided into two categories.
e High-levd file1/O functions also called as standard 1/0 or stream 1/O functions.

e Low-levd file I/O functions dso called as system /O functions.

The low-leve disk 1/0 functions are more closely related to the computer’ s operating system
than the high-level disk I/O functions. This chapter is concerned only with high-level disk 1/0
functions.

Asyou can see the high-leve file I/O functions are further categorised into text and binary but
this chapter will deal only with text mode. We will directly jump to functions, which perform file
I/0O in high-level, unformatted text mode.

9.2 Unformatted high-level disk 1/O functions

9.2.1 Opening a file with fopen() function

Before we can write information to afile on adisk or read it, we must open the file. Opening a
file establishes a link between the program and the operating system. The link between our
program and the operating system is a structure called FILE, which has been defined in the
header file “stdio.h”. The FILE structure contains information about the file being used, such
as current size, location in memory etc. So afile pointer is a pointer variable of the type FILE.

It is declared as

FILE *fp; |

where fp isapointer of FILE type.

— —~ 7 Patni Internal Page 125 of 154

C Programming

The general format of fopen() is

FILE *fp;
f p=fopen(“fil e_nane”, “type’);

where,
File_name character string that contains the name of the file to be opened.
Type a character string having one of the following modes in which we can
open afile.
File Type/ .
File mode Meaning
Opens an exigting file for reading only. If the file does not exidL, it
r returns NULL.
W Opens anew file for writing only. If the file exists, then it’s contents
are overwritten. Returns NULL, if unable to open file.
Opens an existing file for appending. If the file does not exist then a
a new fileis created. Returns NULL, if unable to open file.
- Opens an exigting file for reading, writing and modifying the existing
contents of the file. Returns NULL, if unable to open file.
W Opens a new file for both reading and writing. If the file already exists
then it's contents are destroyed. Returns NULL, if unable to open file.
ar Opens an exigting file for reading and appending. If the file does not
exist, then anew fileis created.

9.2.2 Closing a file with fclose() function

When we have finished working with the file, we need to close the file. Thisis done using the
function fclose() through the statement

fclose(fp);

fclose closes the file to which the file pointer fp points to. It aso writes the buffered data in the
file before close is performed.

9.3 Character |nput/Output in files

The getc() and putc() functions can be used for character 1/0. They are used to read and write a
single character from/to afile.

Patni Internal Page 126 of 154

C Programming

9.3.1 The function getc()

The function getc() is used to read characters from afile opened in read mode by fopen().
The general format is:

| getc(fp); |

getc() gets the next character from the input file to which the file pointer fp pointsto. The
function getc() will return an end-of -file EOF marker when the end of the file has been reached
or if it encounters an error.

9.3.2 The function putc()

The general format of putc() is:
| putc(c, fp); |

where putc() function is used to write characters to a disk file that can be opened using fopen()
in“w” mode. fp isthefile pointer and c is the character to be written to thefile.

On success the function putc() will return the value that it has written to the file, otherwise it
returns EOF.

Now we have seen functions fopen(), fclose(), getc(), putc() etc. As a practical use of the above
functions we can copy the contents of one file into another.

/* This programtakes the contents of a text file and
copies into another text file, character by character */
include <stdio. h>
voi d mai n(voi d)
{
FILE *fs, *ft;
char ch;
fs=fopen(“prl.c”,’r”); /* open file in read node */
i f(fs==NULL)
put s(“Cannot open source file”);
exit(0);
}
ft=fopen(“pr2.c”,”w'); /* open file in wite node */
i f(ft==NULL)
{
put s(“Cannot open target file”);
fclose(fs);
exit(0);
}
whi | e(1)
~ A 7 0 Patni Internal Page 127 of 154

C Programming

ch=getc(fs);

i f(ch==EOF)
br eak;
putc(ch, ft);

fclose(fs);
fclose(ft);

Fig 9.1: Program to copy one fileto another file

9.4 Command Line Arguments (Using arqgc and argv
par ameter s)

The main() function takes two arguments called ar gv and ar gc.

The genera format is
mai n(ar gc, ar gv)
i nt argc;
char *argv[];

The integer argc (argument count) contains the number of argumentsin the command line,
including the command name.

argv (argument vector) is an array which contains addresses of each arguments.

When there is a need to pass information into a program while you are running it, then the
information can be passed into the main() function through the built in arguments argc and
argv.
e Consider an example that will print your name on the screen if you type it directly
after the program name.

/* Programthat explains argc and argv */
include <stdio. h>

mai n(argc, argv)

int argc;

char *argv[];

i{f (argc==1)
printf(*“ You forgot to type your nane \n”);
exit();
E)rintf(“HeIIo %", argv[1]);
}Qj_t&: % Hel | o Message

Patni Internal Page 128 of 154

C Programming

You forgot to type your nane
% Hel | o Message Boston’s

Hel | o Boston’s

Fig 9.2: Sample Code using command line arguments

/* This program copies one file to another using
command |ine argunments */

#i ncl ude <stdi o. h>

mai n(int argc, char *argv[])

{
char ch;
FILE *fpl, *fp2;
if ((fpl=fopen(argv[1l],”r”))==NULL)
{
printf(“Cannot open file % \n”,argv[1]);
exit();
if ((fp2=fopen(argv[2],”w))==NULL)
{
printf(“Cannot open file % \n”,argv[2]);
exit();
}
whi | e((ch=getc(fpl))!=EOF)
/* read a character fromone file */
putc(ch, f p2);
fclose(fpl);
fclose(fp2);
}
Qut put :

ncopy prl.c pr2.c
(prl.c will get copied to pr2.c)

Fig 9.3: Program to copy one file to another using command line arguments

9.5 String (ling) Input/Output in Files

We have seen putc() and getc() functions as character 1/0O in files. But reading or writing strings
of characters from and to files is as easy as reading and writing individual characters.

The functions fgets() and fputs() can be used for string 1/0..

9.5.1 Library Call fgets()

The routine fgets() is used to read aline of text from afile.

The genera format is:

| char *fgets(char *s, int n, FILE *fp);

Patni Internal

Page 129 of 154

C Programming

The function fgets() reads character from the stream fp into the character array 'S until a newline
character is read, or end-of-file is reached, or n-1 characters have been read. It then appends the
terminating null character after the last character read and returns‘s'. If end-of-file occurs before
reading any character or an error occurs during input fgets() returns NULL.

9.5.2 Library Call fputs()

The routine fputs() is used to write aline of text from afile.

The general format is:

int fputs(const char *s, FILE *fp);

The function fputs() writes to the stream fp except the terminating null character of string s. It
returns EOF if an error occurs during output otherwise it returns a nonnegative value.

The program given below writes strings to a file using the function fputs().

/* Receives strings fromkeyboard and wites themto file. */
#i ncl ude<st di 0. h>
voi d nai n(voi d)

FI LE *fp;

char s[80];
fp=fopen(“test.txt”,”w);
i f(fp==NULL)

put s(“Cannot open file”);
exit(0);
}

printf(“Enter few lines of text \n “);
whil e(strlen(gets(s)) >0)

fputs(s,fp);
fputs(“\n”,fp);

1ch ose(fp);

Fig 9.4: Program to accept thetext and writeit in thefile

In this program we have set up a character array to receive the string, the fputs() function then
writes the contents of the array to the disk. Since the fputs() function does not automaticaly add
anewline character we have done this explicitly.

— —~ 7 Patni Internal Page 130 of 154

C Programming

/* Programto read strings fromthe file and displ ays
them on the screen */
#i ncl ude<st di 0. h>
voi d nai n(voi d)
{
FILE *fp
char s[80];
fp=fopen(“test.txt”,”r”);
i f(fp==NULL)
put s(“Cannot open file”);
exit(0);
}
whi l e(fgets(s, 79, fp) !=NULL)
printf(“9%”,s);
fclose(fp);
}

Fig 9.5: Program to read strings from the file and display them on the screen

The function fgets() takes three arguments. The first is the address where the string is stored
and second is the maximum length of the string. This argument prevents fgets() from reading it
too long a string and overflowing the array. The third argument is the pointer to the structure
FILE.

9.6 Formatted high-leve disk 1/O functions

C language provides two functions fprintf() and fscanf() which provides formatted
Input/Output to the files. The functions fprintf() and fscanf() are used in the same manner as
scanf() and printf() and require afile pointer as their first argument.

9.6.1 The Library Function fprintf()

The genera format is:

int fprintf(fp,format,s)
FILE *fp;
char *format;

Thecall fprintf() places output on the named output to which the file pointer fp points,
S represents the arguments whose values are printed.
format is the format specifier string. The format conventions of printf() work exactly same with

fprintf().

Patni Internal Page 131 of 154

C Programming

9.6.2 The function fscanf()

The function fscanf() reads from the file to which the file pointer points.

The genera format is

int fscanf(fp,format,s)
FILE *fp;
char *format;

The function fscanf() reads from the file to which the file pointer fp is pointing. fscanf()
returns the number of values read.

format isthe format specifier string.
S represents the arguments (or buffer area) where data is stored after the read operation.

The following program shows the use of fprintf() and fscanf().

/* This programis taking input fromkeyboard and witing
it tothe file and then printing on the screen */
include<stdio. h>
voi d mai n(voi d)
{
FILE *fp;
char s[80];
if ((fp=fopen(“test.txt”,”w))==NULL)
printf(“Cannot open the file \n”);
exit(0);
fscanf(stdin,”%™\n]”,s);/* reading fromthe keyboard */
fprintf(fp,”"%",s); /* witing to the file */
fclose(fp);
if((fp=fopen(“test.txt”,”r”))==NULL)
{
printf(“Cannot open the file \n");
exit();
fscanf (fp,”%"™"\n]”,s); /* reading fromthe file */
fprintf(stdout,”%”,s); [* printing on the screen */
}

Fig 9.6: Program to explain fscanf() and fprintf()

9.7 Direct Input/Output

Direct input/output functions provide facilities to read and write a certain number of data
items of specified size. The functions are fread() and fwrite().

— —~ 7 Patni Internal Page 132 of 154

C Programming

9.7.1 Library Call fread()

The general format is:

int fread(ptr,size,nitens,fp)
char *ptr;

int size,nitens;

FI LE *fp;

The function fread() reads into array ptr upto nitems data items of size size from the stream fp
and returns the number of items read.

If an error is encountered fread() returns EOF otherwise returns the number of items read.

The file pogition indicator is advanced by the number of characters successfully read. For
example, assuming 4-byte integers, the statement

rchar =f read(buf, si zeof (i nt), 20, i nput);

reads 80 characters from input into the array buf and assigns 80 to rchar, unless an error or end-
of-file occurs.

9.7.2 Library Call fwrite()

The genera format is

int fwite(ptr,size,nitens,fp)
char *ptr;

int size,nitens;

FI LE *fp;

Thefunction fwrite() appends at the most nitems item of data of size size in the file to which the
file pointer fp points to, from the array to which the pointer ptr pointsto.

The function returns the number of items written on success, otherwise EOF if an error is
encountered.

The file position indicator is advanced by the number of characters successfully written. For
example,

wchar =fwri t e(buf, si zeof (char), 80, out put) ;

writes 80 characters from the array buf to output, advances the file position indicator for output
by 80 bytes. and assigns 80 to wchar unless an error or end-of-file occurs,

One of the most useful applications of fread() and fwrite() involves the reading and writing of
user defined data types, especidly structures.

A smple mailing_list program using fread() and fwrite() is given below. The functions load()
and save() perform the loading and saving operations of the database.

—— ~ q Patni Internal Page 133 of 154

C Programming

include <stdio. h>
include <string. h>
define SIZE 100
void int_list(void);
void enter();
voi d di splay(void);
voi d save(void);
voi d | oad(void);
void menu();
int i,t;
struct |ist_type
{
char nane[20];
char street[2];
char city[10];
char state[3];
char pin[10];

Hist[SlZE];
voi d mai n(voi d)
{

char choice;
printf(“Enter choice (e/d/s/l/q)”);
scanf (“%”, &hoi ce);
for(;;)
{
swi t ch(choi ce)
{
case 'e':
enter();
br eak;
case 'd':
di splay();
br eak;
case 's':
save();
br eak;
case 'I|"':
| oad();
br eak;
case 'q':
exit();
br eak;

}
}
void int_list(void) /* initialize the list */
{

register int t;

for(t=0;t<100;t ++)

strcpy(list[t].nane,"\0");/*zero length signifies enpty */

— Patni Internal

Page 134 of 154

C Programming

voi d enter(void)

register int i;
for(i=0;i<SlIZE;i++)
if(!'*list[i].nane)
br eak;
i f(i==SlIZE)

printf("list full\n");
return;
}
printf("nanme");
gets(list[i].nane);
printf("Street:");
gets(list[i].street);
printf("State:");
gets(list[i].state);
printf("Pin:");
gets(list[i].pin);

}
/* display the list */
voi d di spl ay(voi d)
{

register int t;

for(t=0;t<SlZE;t ++)

printf("%\n",list[t].nane); /* printf all the

i nformation the sane way */

/* save the list */
voi d save(void)

{
FILE *fp;
if((fp=fopen("maillist","wt+"))==NULL)
{

printf("Cannot open file \n");
return;

}

}
/* load the file */
voi d | oad(voi d)

{
FILE *fp;
register int i;
if((fp=fopen("maillist","r+"))==NULL)
{
printf("Cannot open file \n");
return;
}
}

voi d menu(voi d)

— —~ 7 Patni Internal Page 135 of 154

C Programming

/* print choices and return appropriate choice */

9.8 Error Handling Functions

The error handling functions provide facilities to test whether EOF returned by a function
indicates an end-of -file or an error.

9.8.1 The function feof()

Because the buffered file system is designed to handle both text and binary files, it is necessary
that there should be some way other than the return value of getc() to determine that the end-of -
filemark isdso avdid integer value that could occur in abinary file.

The genera format is

| int feof (FILE *fp); |
Where fp isavdid file pointer.

The function feof()returns true (non-zero) if the end of the file pointed to by fp has been reached
otherwise it returns zero.

9.8.2 The function ferror()

The generd format is
| int ferror(FILE *fp); |

The function ferror() returns a non-zero vaue if the error indicator is set for the stream fp and O
otherwise.

9.8.3 The function perror()

The general format is

| voi d perror(const char *s);: |

The function perror() writes to the standard error output stderr the string s followed by a colon
and a space and then an implementation- defined error message corresponding to the integer in
errno, terminated by a newline character.

Patni Internal Page 136 of 154

C Programming

The program given below receives records from keyboard, writes them to a file and aso
display them on the screen.

#i ncl ude<st di 0. h>
voi d mai n(voi d)
{
FILE *fp, *fpr;
char anot her="Y";
struct enp
{
char nane[40];
i nt age;
fl oat bs;
1
struct enp e;
f p=f open("enp.dat","w');
i f(fp==NULL)
{
put s(" Cannot open file");
exit(0);
}
whi | e(anot her=="Y")
{
printf("\n enter nane , age basic salary\n");
scanf ("%%% ", &e. nane, &e. age, &e. bs) ;
fwite(&e, sizeof(e),1,fp);
printf("Add another record (Y/N)");
fflush(stdin);
anot her =get char () ;
}
fclose(fp);
fpr=fopen("enp.dat","r");
i f(fpr==NULL)
{
put s(" Cannot open file");
exit(0);
}
whi | e(fread(&e, sizeof(e), 1, fpr)==1)
printf("% % % \n",e.name,e.age, e. bs);
fclose(fpr);
}

Fig 9.7: Program to accept, write and display the record

9.9 FilePositioning

A file may be accessed sequentially or randomly. In a sequential access, al the preceding data
is accessed before accessing a specific portion of afile. Random access permits direct access to
a specific portion of afile. fseek(), ftell() and rewind() are the functions used in random access
of afile.

— —~ 7 Patni Internal Page 137 of 154

C Programming

9.9.1 The function fseek()

The general format is

int fseek(FILE *fp,long offset, int ptrnane);

fseek () sets the postion of the next input or output operation in the file to which the file pointer
fp points to. The new position is at the signed distance offset bytes from the beginning , from the
current position or from the end of the file depending upon the value of the ptrname. The third
argument can be either SEEK_CUR, SEEK_END or SEEK_SET.

The function returns O when successful otherwise anonzero vaue.
e SEEK END means move the pointer from the end of the file.

e SEEK_CUR means move the pointer from the current position.
e SEEK_SET means move the pointer from the beginning of the file.

Here are some examples of calsto fseek() and their effect on the file position indicator.

fseek(fp,n,SEEK _CUR) sets cursor ahead from current position by n bytes
fseek(fp,-n,SEEK _CUR) sets cursor back from current position by n bytes
fseek(fp,0,SEEK _END) sets cursor to the end of thefile
fseek(fp,0,SEEK_SET) sets cursor to the beginning of thefile

9.9.2 The Function ftell()

The generd format is
long ftell (FILE *fp);

Thefunction ftell() returns the current value of the file position indicator associated with fp.

9.9.3 The function rewind()

The general format is
| void rewi nd(FILE *fp). |

The function rewind() resets the current value of the file position indicator associated with fp to
the beginning of thefile.

Thecall
| rewi nd(fp):
has the same effect as
voi d fseek(fp, 0, SEEK SET);

The use of rewind() alows a program to read through a file more than once without having to
close and open the file again.

. B Patni Internal Page 138 of 154

it By C Eni

C Programming

10 Miscellaneous

10.1 The C Preprocessor

The C preprocessor is exactly what its name implies. It is a collection of special statements,
caled directives. It can be an independent program or its functiondity may be embedded in
the compiler.

10.2 Introduction to Preprocessor

It is a program that processes the source text of a C program before the program is passed to the
compiler.

It has four major functions
e Macro replacement

e Conditional compilation

e Fileinclusion

e Error generation

The C preprocessor offers several features called preprocessor directives. Each of these

preprocessor directives begin with a # symbol. We will learn the following preprocessor
directives here

e #define directive
e #include directive
e #undef directive
e #error directive

e Conditional compilation directives.

10.3 Macro substitution

Thisisavery useful feature. The preprocessor replaces every occurrence of asimplemacro in
the program text by a copy of the body of the macro. The body of the macro may itself contain
other macros. It is achieved using the #define directive.

The genera syntax is

#define macro-nane sequence-of -tokens |

The above declaration associates with the macro-name whatever sequence-of -tokens appears
from the first blank after the macro-name to the end of the file.

— —~ 7 Patni Internal Page 139 of 154

C Programming

It is a convention to write al macrosin capitas to identify them as symbolic constants.

/* This program explains nmacro substitution using #define */
#i ncl ude <stdio. h>
/* Associ ates macro name GREET with value “hello” */
#defi ne GREET “hell 0”
/* Associates macro nane NAME with val ues Ash wini */
#defi ne NAME “Ash” “ “ “wini”
/* Associates macro name MAX with val ue 10 */
voi d nai n(voi d)

{
printf(“\n%\t”, NAME);
printf(“%”, GREET);

}

Qut put :

Ash wi ni hell o

Fig 10.1: Program using macros

The program given below shows #define directive used to define operators.

#i ncl ude <stdio. h>
#defi ne & & AND
#define || OR

voi d mai n(voi d)

int f=1,x=4, y=90;

if((f <5 AND (x<=20 OR y <=45))
printf(“Your pc will work fine..... ")
el se
printf(“ln front of the maintenance man...... ")

Fig 10.2: Program to explain #define dir ective.

10.3.1 Macros with arguments

The macros that we have used so far are called simple macr os. Macros can have arguments.
Thisisdso cdled as parameterized macros.

#i ncl ude <stdi o. h>
#define AREA(r) (3.14*r*r)
voi d mai n(voi d)

{
fl oat radius;
printf(“Enter the radius \t”");
scanf (“% ", & adi us) ;
printf(“\nArea of the circle is %", AREA(radi us));
}
Fig 10.3: Program to explain macros with arguments

—— ~ q Patni Internal Page 140 of 154

C Programming

10.3.2 Nesting Of Macros

We can aso use one macro in the definition of another macro. That is macro definitions may be

n

ested. For instance, consider the following macro definitions

/* This program shows use of nesting of macros */
#i ncl ude <stdi o. h>

#defi ne SQUARE(x) (x*Xx)

#def i ne CUBE(x) (SQUARE(X) * X)

voi d mai n(voi d)

.
int no;
printf(“Enter the nunber *);
scanf (“%”, &no) ;
printf(“\nSquare of a nunber is %”, SQUARE(nO));
printf(“\nCube of a nunmber is %l”, CUBE(no));
}

Fig 10.4: Program to explain the use of nesting of macr os

10.4 UndefiningaMacro
A defined macro can be undefined, using the statement

#undef identifier

Thisis useful when we want to restrict the definition only to a particular part of the program.

In the above program macro-name SQUARE and CUBE can be undefined using the statement

#undef SQUARE
#undef CUBE

10.5 Filelncluson

This preprocessor directive causes one file to be included in another. This feature is used in two
cases

If we have a very large program, it is good programming practice to keep different
sections in separate file. These files are included at the beginning of main program
file.

Many a times we need some functions or some macro definitions almost in all
programs hat we write. In such a case, commonly needed functions and macro
definitions can be stored in a file and that file can be included wherever necessary.

There exist two ways to write #include statements. These are

#i ncl ude <fil enanme>
#i ncl ude “fil enane”

—— ~ q Patni Internal Page 141 of 154

C Programming

The meaning of each form is given below.

#include <programl.h> This command would look for the file programl.h in the
default include directory.

#include “program1.h” This command would look for the file programl.h in the
default include directory as well as current directory.

For example if we have the following three files

function.c contains some functions
proto.h contains prototypes of functions
test.c contains test functions

We can make use of a definition or function contained in any of these files by including them in
the program as shown below.

#include <stdio.n>
#include “function.c”
#include “ proto.h”
#include “test.c”
#defineM 50

void main(void)

....... /* Here the code in the above three files */
........ /* is added to the main code */
........ [* and the fileis compiled */

10.6 Conditional Compilation

Conditional compilation alows sdective inclusion of lines of source text on the basis of a
computed condition. Conditional compilation is performed using the preprocessor directives

o #ifdef

o #ifndef
o Helif

e #else
o #endif

We can have the compiler skip over, part of a source code by inserting the preprocessing
commands #ifdef and #endif.

The generd formis

#i f def nmacroname
statenent 1;
statenent 2 ;

#el se
statenent 3 ;

#endi f

—— ~ q Patni Internal Page 142 of 154

C Programming

If macro-name has been #defined, the block of code (statement 1 and statement 2) will be
processed otherwise else statement 3 will be executed.

#i ncl ude <stdi o. h>

#i f ndef PI
#define Pl 3.14
#endi f

voi d mai n(voi d)
{

fl oat area,rad;

printf(“Enter the radius :- “);

scanf (“% ", & ad) ;

area=Pl *r ad*r ad;

printf(“\n The area of the circle is %2f “,area);

#ifndef directive is the opposite of the #ifdef directive. The #ifdef includes the code if the
identifier is defined before but #ifndef indudes it if the identifier has not been defined before.

#elif statemenrt is analogous to the else is construct. Using this, a switch case construct can be
constructed for preprocessing purpose.

10.7 Error Generation

Using #error directive, we can display the error message on occurrence of error.

The directive of the form
[#error token_sequence

causes the implementation to produce a diagnostic message containing the token_sequence.

For example
#i f ndef PI
#error “Pl NOT DEFI NED’
#endi f

If Pl is not defined preprocessor will print the error message “Pl NOT DEFINED” and
compilation will not check further.

10.8 User Defined Data Types

For the purpose of effective documentation of the program, sometimes user requires to define a
new data type of its own. It helpsto increase clarity of the program. It thereby provides greater
ease of maintenance of the program, which is an important part of software management.

—— ~ q Patni Internal Page 143 of 154

C Programming

10.8.1 typedef Statement

C provides a facility caled type definition, which alows users to define new data types that
are equivalent to existing data types. Once a user-defined data type has been established, then
new variables, arrays, structures and so on can be declared in terms of this new data type.

In genera terms, a new datatype is defined as
| t ypedef type newtype; |
where,

type An existing data type(either a standard data type or a previous user-defined
data type).
new-type The new user-defined data type.

It should be understood, however, that the new data type will be new in the name only. In
redlity, this new data type will not be fundamentally different from one of the standard data

types.

Here is a smple declaration involving the use of typedef.
| t ypedef int age:

In this declaration age is a user-defined data type equivalent to type int. Hence, variable
declaration

| age mal e, fenal e: |
is equivaent to writing
| int male, fenal e; |

In other words, male and female are regarded as variables of type age, though they are actually
integer type variables.

Smilarly, the declaration

typedef float height[100];
hei ght boy,girl;

define height as a 100-element, floating-point array type. Hence, boy and girl are 100-element,
floating point arrays.

Another way to express the above declaration is

typedef float height;
hei ght boy[100], girl [100];

though the former declaration is somewhat smpler.

Patni Internal Page 144 of 154

C Programming

The typedef feature is particularly convenient when defining structure, since it eiminates the
need to repeatedly write struct tag whenever a structure is referenced. As aresult, the structure
can be referenced more concisely. In addition, the name given to a user-defined structure type
often suggests the purpose of the structure within the program.

In general terms, a user-defined structure type can be written as
typedef struct

{
menber 1;
menber 2;
menber n;
}newtype;

where, new-type is the user-defined structure type. Structure variables can then be defined in
terms of the new data type.

/* Exanpl e of typedef statenment */
typedef struct

int acct_no;
char acct_type;
char nane[20] ;
fl oat bal ance;
}record;
record ol dcust onmer, newcust oner ;

The first declaration defines record as a user-defined data type. The second declaration defines
oldcustomer and newcustomer as structure variables of type record.

The typedef feature can be used repeatedly, to define one data type in terms of other user-
defined data type.

Following are some examples of structure declarations.

typedef struct

{

i nt nont h, day, year;
}dat e;
t ypedef struct

i nt acct_no;
char acct _type;
char nane[20] ;
fl oat bal ance;
dat e | ast payment;
}record;
record customer[50];

—— ~ q Patni Internal Page 145 of 154

C Programming

In above example, date and record are user-defined structure types, and customer isa50-element
array whose elements are structures of type record.(Recall that date was a tag rather than actual
data type in example). The individua members within the i element of customer can be written
as customer([i] .acct_no, customer[i] .name, customer|i] .lastpayment.month, and so on. asbefore.

There are, of course, variations on thistheme. Thus, an alternate declaration can be written as,

typedef struct

{
i nt nont h, day, year;
}dat e;
t ypedef struct
{

i nt acct_no;
char acct _type;
char nane[20];
fl oat bal ance;
dat e | ast payment;
}record[50];
record custoner;
or sinply
typedef struct

{
i nt nont h, day, year;
}dat e;
struct
-
int acct_no;
char acct _type;
char nane[20] ;
fl oat bal ance;
dat e | ast payment;
}cust oner [50] ;

All three sets of declarations are equivalent.

10.8.2 Enumerations

Enumeration types provide the facility to specify the possible values of a variable by meaningful
symbolic means. This can help in making the program more readable.

It is a data type similar to a structure. Its members are constants that are written as identifiers,
though they have signed integer values. These constants represent values that can be assigned to
corresponding enumeration variables.

The genera format for defining an enumerated data typeis

| enum tag {nenmber 1, nmenber 2,...,nenber n};

Patni Internal Page 146 of 154

C Programming

Where,
Enum Required keyword.
tag An identifier that names the enumeration type.
memberl, member2 Identifiers called enumeration constants or enumerators.

For example, the declaration

| enum col our {bl ack, whi te, pi nk, red, green, yel | ow, bl ue}; |

defines an enumeration type colour whose values are black, white, pink, red, green, yellow and
blue.

An enumeration type is implemented by associating the integer value with the enumeration
constant. Thus, the value 0 is associated with black, 1 with white, 2 with pink, 3 with red, 4 with
green, 5 with yellow and 6 with blue.

These enumeration assignments can be overridden by initidisng the enumerators to different
integer values. Subsequent enumerators without explicit associations are assigned integer values
one greater than the value associated with the previous enumerators.

For example, the declaration

enum col our {bl ack, whi t e=10, pi nk=-1, r ed,
green=3, yel | ow, bl ue};

The enumeration constants will now represent the following integer values :

black 0
white 10
pink -1
red 0
green 3
ydlow 4
blue 5

An enumeration constant must be unique with respect to other enumeration constants and
variables of within the same name scope.

Thus, the declaration

| enum dyes {purpl e, orange, magnet a, gr een};

isinvaid asthe identifier green has already been defined to be an enumerator of colour.

Patni Internal Page 147 of 154

C Programming

We can assign the values of enumerators to variables as shown below

enum mar_status
{
single,
married,
divor ced
}personl,person2;
personl=married; /* Assign value married to personl */
person2=single; /* Assign value single to person2 */

/* Exanple : enunerated data type */
include <stdio. h>
include <string. h>

enum e_dept {
Account s,
Sof t war e,
Mar ket i ng,

1

struct enp
char nane[10];
i nt age;
fl oat sal ary;
enum e_dept dept;

“Marketing" } ;

1
char *dept_names[3] = { "Accounts", "Software"
voi d mai n(voi d)
{
struct enp e;
strcpy(e. nanme, "Martin");
e. age=35;
e. sal ary=8865. 70;
e. dept =Sof t war e;
/* Printing the value of e variable */
printf("\ nNane . 8", e.nane);
printf("\nAge . %", e. age);
printf("\nSal ary . % ",e.salary);
printf("\nDepartnent : %", dept_nanes[e.dept]);
}

Fig 10.5: Program using enumer ated data type

Using enumeration variables in the program, can often increase the logical clarity of that
program. These variables are particularly useful a flags, to indicate various options for carrying
out a caculation or to identify various conditions that may have arisen as a result of previous

internal calculations.

C does not provide facilities for reading or writing vaues of enumeration types. They may

only be read or written as integer values.

—— ~— Patni Internal

it By C Eni

Page 148 of 154

C Programming

10.9 Unions

Unions like structures, contain members whose individual data types may differ from one
another. However, the members that compose a union all share the same storage ar eawithin
the computer's memory, whereas each member within a structure is assigned its own unique
storage area. The compiler alocates sufficient space to hold the largest data item in the union.
Thus, unions are used to conserve memory. They are useful for applications involving multiple
members, where values need not be assigned to all of the members at any one time.

The generd format for declaration of unionis

storage-cl ass uni on tag_nane
{
dat a_type nmenber 1;
dat a_type nenber 2;
}
Where,
storage-class Optional storage class specifier
union A keyword that introduces a union definition.
tag The name of the union
memberl, member2 Set of type of declarations for the member data items
that make up the union.

For example, the statement
uni on book_bank

{

char *aut hor;

i nt pages;

float price;
} dat a;

defines a variable data that can hold an integer, afloat and a pointer to char.

Elements of a union are accessed in the same manner with the help of dot operator like
structures.

For example, an integer pages is accessed as
dat a. pages

Pointer variables can be declared along with the union declaration, or declared separately using
tag name as follows

uni on book_bank

{
char aut hor;
i nt pages;
float price;
}data, *ptr;
. B Patni Internal Page 149 of 154

C Programming

or

| uni on book _bank *ptr;

declares data to be a variable of type union book bank and the variable ptr to be a pointer to a
union data variable.

10.9.1 Operations on a Union

In addition to the features discussed above, union has all the features provided to a structure
except for minor changes which are a consequence of the memory sharing properties of aunion.

Following are some valid operations on unions.
e Anunion variable can be assigned to another union variable.

e The address of the union variable can be extracted by using the address of operator(&).

e A function can accept and return a union or a pointer to a union.

10.9.2 Differences between Structures and Unions

There are important differences between structures and unions though the syntax used for
declaring them is very smilar.

Memory Allocation

The amount of memory required to store a structure variable is the sum of sizes of al the
members in addition to the padding bytes that may be provided by the compiler. While in case
of a union, the amount of memory required to store is the same as that required by its largest
member.

Thisisillugtrated using following example

/* programto check size of a structure and a union */
include<stdio. h>
voi d mai n(voi d)
{
struct
{
char nane[20] ;
i nt enpno;
float salary;
} enp;
uni on

char nane[20] ;

i nt enpno;

fl oat sal ary;
} desc;
printf(“ The size of the structure is %\ n", sizeof (enp));
printf(“ The size of the union is %\ n", sizeof (desc));

—— ~ q Patni Internal Page 150 of 154

C Programming

Qut put
The size of the structure is 31
The size of the union is 20

Fig 10.6: Program to find the size of the structure and the union
Operations of Members

While dl the structure members can be accessed at any point of time, only one member of a
union may be accessed at any given time. Thisis because athough a union contains sufficient
storage for the largest type, it may contain only one value a a time; it is incorrect to store
something as one type and then extract as another.

Thus the following statements -

dat a. pages=100;
printf("%",data.price);
/* where price is nmenber of union data */

produce anomal ous results.

It is the programmer's responsibility to keep track of the active variable (i.e. variable which was
last accessed).

— —~ 7 Patni Internal Page 151 of 154

C Programming

Appendix A: Table of Figures

Fig 1.1: Various Stages of COMPIlation............ooiuiiiiiiieiiiieniie e 2
Fig 1.2: Data TYPESIN C. .ottt e e e e e e e e st r e e e e e e s e s anbree e e e e e e e e e ennnrnnees 3
Fig 1.3: Data types and their FaNQE.........cueeiueieiiiieiiie ettt 5
Lo [L T s G O o | - 1 o PR 7
Fig 2.1: Sample Code USING SIZEO0F OPEN ALKuvieiieieriie et e st 12
Fig3.1: Format of [F StatemMentooooiiiiiieiee e 15
Fig 3.2: Program to print the maximum of the two numbersusing if statement................. 16
Fig 3.3: Format of if..else Statement..........ccvviiiieiie e 16
Fig 3.4: Program to check whether the given number isevenor odd...........cccceviveeiiieenee 17
Fig 3.5: Format of Nested if Statementceeviiiiiiiiiiiiiiieee e 17
Fig3.6: Format of else.if Statementoooiiiiiie e 18
Fig 3.7 Program to calculate and print telephone bill for customers............ccccoeveeeeenines 18
Fig 3.8: Format of SWitCh StatEmMENTooiiiiiiiiiee e 19
Fig 3.9: Format of Whil€ 100Duueiiieiii i 19
Fig 3.10: Program to print numbers1to 10 using Whileloop............ccceeiieeiiieeiiiee e 20
Fig 3.11: Format of do...Whil€100p.........coiciiieeeeeee e 20
Fig 3.12: Program to print numbers1to 10 using do...whileloop........ccccceviieiiiieriiieenaee 21
Fig 3.13: FOrmat Of TOr 100P........uuiiiiiiee et e e e e e e e e e e e e eeanes 21
Fig 3.14: Program to print numbers1to 10 using for [00p..........cceviieeiiieiiiiee e 22
Fig 3.15: Program to print sum of prime numbersbetween 10 and 100.............cccceeeeennnes 23
Fig4.1: Format of @ function declaration............ccccovueeeiieeiiiie e 25
Fig 4.2: Format of afunction definitioncccccoeeiiiiiiiiiiice e 26
Fig4.3: Format of afunction Call............cooiiiiiiiiii e 27
Fig4.4: Example of fUNCLION USAQEcccuviiiieie et e e e e 27
Fig 4.5: Syntax of return StatemMENT.........c.eiiiiiieieeee e e 28
Fig 4.6: Sample codefor return StatemeNtc..cooiiiiiiiiiiiee e 28
Fig 4.7: Sample code using morethan onereturn statement............cccevveeiiiee e ciieeee 29
Fig 4.8: Sample code for fuNCtion argUMENTS.........cooocciiiiiriie e 30
Fig 4.9: Sample code for passing argumentsby valuecccooeiiiiiiiiii e 31
Fig 4.10: Sample code using external variables............ccooeveveiiiiiicii e 32
Fig 4.11: Sample code for fuNCtion arQUMENES..........ceeeiiiiiiiiiiiiee e 35
Fig 4.12: Sample codefor the usage of external variables.............ccooeevveiiiiiciciiecee e, 37
Fig4.12: Program To calculate factorial of an integer using recursion...........cccccveeeevveenee 39
Fig 5.1: SAMPIe COOE USING ATTAYS ..ciiiieiiiiiiiieeie e ee e e e e ettt e e e e e e e s estaree e e e e e e e e s ssannraeeeeaeeeeennnes 45
Fig 5.2: Sample codefor Two dimensional Array proCeSSinNg.........ccocueeerveeereeeereeesneeenens 48
Fig. 6.1: Sample Codefor ‘&’ OPEFalor..........uviiiiiee i it eee e e e e e e e e e e e e 56
Fig. 6.2 Memory representation Of POINTES..........cuoiiiiiiiiieiie e 57
Fig 6.3: Memory Representation of Pointer ArithmetiC............ooccciveeeiii e 60
Fig 6.4: Accessing elementsof atableusing indirection operator *cccoceeviieeiiieenne 73

— Patni Internal Page 152 of 154

C Programming

Fig 6.5: Matrix populated With VAIUES...........c.cooiiiiiiiiie e 74
Fig 6.6: Memory representation of pointer expression * (X[2]+5)uveeeveeeiiiiiiiiieeeeeeeeeeens 78
Lo G A= o |V TSRS 89
Fig 7.1: Format for defining @ SIrUCIUIE.......ovviiieiie e 90
Fig 7.2: SErUCTUr@fOr @D0O0Keiiiiiieiiiie et 91
Fig8.1: Structureof anodein Singly linked list...........cevevieeiiiiiiie e, 112
Fig8.2: Pictorial representation of Singly linked list in Memory...........ccccooveeiieeiiieee 112
Fig 8.3: Structurefor Employee nodein theLinked list...........coocviieeiieiiiiiiiieeeee e 113
Fig 8.4: Codefor creation of anodein the Linked list..........cccoovieiiiiiiiiiee e 113
Fig 8.5: Header (list) for the Linked list........c..oeevveeeiiiieeee e 113
Fig 8.6: Making Header (list) to point thefirst node of theLinked list..........ccccocveeninenne 114
Fig 8.7: Insertion of a node at the beginning of theLinked list........ccccccooovviiiiiennnnns 114
Fig 8.8: Insertion of anode at the middle of theLinked list...........ccooveiiiiiniiiicnen 115
Fig 8.9: Insertion of anodeat theend of theLinked list...........ccccoieeieeiiiiiiiiiieee e, 115
Fig 8.10: Codefor insertion of anodein the Linked liSt...........cooceiiiiiiiiiiiinieeee e 116
Fig 8.11: Codefor creation of anodeintheLinked list............ccccoviieeeiiiiiiciiiieeee e, 117
Fig 8.12: Codefor displaying all nodesin the Linked list...........ccccooiiiiiiiiiinieiiiiee e 117
Fig 8.13: Deletion of thefirst node from theLinked list...........ccccooieeiieiiiiiiiieieee e, 118
Fig 8.14: Deletion of the middle node from the Linked list..........ccccooeiiiiiiiiiiiicee 118
Fig 8.15: Deletion of thefirst node from theLinked list...........ccccoiieeiieiiiiciiieee e, 119
Fig 8.16: Complete codefor Linked list OPErationscoevveeeiieeiniee e 122
Fig 8.17: A stack containing Stack ItEMIS..........eeivieiiiiiiiiiiee e 123
FIG 8.18: A UEBUEL ...ttt ettt ettt e e b e e e bb e e e nn e e e nn e e anreean 124
Fig 9.1: Program to copy onefiletoanother file.........cccoeeeeeiiiiiiii e, 128
Fig 9.2: Sample Code using command line argUMENtS............coorueeriieeinieeeniee e 129
Fig 9.3: Program to copy onefileto another usng command linearguments.................. 129
Fig 9.4: Program to accept thetext and writeit in thefile...........ccocooii 130
Fig 9.5: Program toread stringsfrom thefile and display them on the screen................ 131
Fig 9.6: Program to explain fscanf() and fprintf()ccoceereiiiiiniee e 132
Fig 9.7: Program to accept, write and display therecord............cccooeeeeeiiiiiciiiieeeee e, 137
Fig 10.1: Program USING MACTOScc.ueeeiueterteeesieeesreeessseeassseesassesssssesssssesssnsesssssessnseeesns 140
Fig 10.2: Program to explain #define directive............ccveeeeeeiiiiiiiecee e, 140
Fig 10.3: Program to explain macroswith arguments............cccoeeeiiieeiniee e 140
Fig 10.4: Program to explain the use of nesting of Macros..........ccccccceeveeeeiicciiieeeee e 141
Fig 10.5: Program using enumerated data type.........ceeeruererieeiiieiiniie e 148
Fig 10.6: Program to find the size of the structure and theunion................ccccccceeeeeeennns 151

— Patni Internal Page 153 of 154

C Programming

Appendix B: List of tables

Tablel.1: ESCAPE CNarGCLErS......cocuuiiiiiie ettt an e ane e 6
Table1.2: Format Control SIHNGS......cccuvieiiiee e e e e e 6
Table2.1: Relational OPEr @lOrS.........coiuiiiiieie ettt ie e 8
Table2.2: LOQICal OPEN @LONS.....ueiiiieeeiiiciiieiee e e e e e e e ettt e e e e e s e e et e e e e e e e e e seanaereeeeaeeeeesnnnnrneees 9
Table2.3: Operation of logical & & and || OPErALOrS........ccvueeiiiiiiriie e 9
Table 2.4: Examplesfor Unary OPEr @lOrS.......cccovieuviieieeeeeeeesciiree e e e e e e s s e e e e e e e e eanaeees 10
Table 2.5: Explanation of Compound ASSIgNMent OPEralorsc.eeeveeeerveeenieesnieeesninens 11
Table 2.6: Examplesfor Compound AsSignMment OPer alorS........uveeveeeeevieivrreeeeeeeeeeeiienneens 11
Table2.7: Precedence and AssociatiVvity Of OPEralorsS.cceevueeeiieeeniee e 12
Table2.8: The conversion rulesfor different datatypes.........ccoccvveeeeiiiiiiiiieeee e, 13
Table2.9: ArithmetiC OPEralioNS........ccuuieiiiieiiii e 13
Table5.1: stremp() fuNCLion return ValUES.............evviiiiiiie e 51
Table5.2: String built-in FUNCHIONS.ooiiii e 53
Table6.1: Pointer deClaralions............cuveiiiieiiiieii s 88
=y, Patni Internal Page 154 of 154
L/ y 2 (_
P o Tar i Enil

